Photocatalytic Elimination of Methylene Blue by Nanofibrous Polystyrene Membrane Containing TiO2 Nanotube

Document Type : Research Paper

Authors

Nanotechnology Department, Faculty of Chemistry, Urmia University, Iran

Abstract

In this research, the nanofibrous polystyrene /titanium dioxide nanotube (PS/TiO2 nanotubes) membrane was prepared by electrospinning method. In order to synthesize titanium dioxide nanotubes, the anodizing method was used. Then, the effect of different weight percentages of titanium dioxide nanotubes on the performance of the resulting membranes was investigated. The nanoparticles and nanocomposites prepared in this research were analyzed using several analyses, including fourier transform infrared spectroscopy (FT-IR) and field emission scanning electron microscopy (FE-SEM), along with X-ray energy diffraction spectroscopy (EDS). The thermal behavior and crystal structure of prepared nanocomposite membranes were investigated using (TGA) analysis and X-ray diffraction (XRD), respectively. Afterward, in order to investigate the prepared structures, analyses such as porosity measurment, water contact angle, swelling and water flux of the membranes were performed. The photocatalytic property of the prepared membranes toward decomposition of methylene blue was investigated by two methods. The obtained results demonstrated that the dye removal was accomplished in the best way in the static method (using the membrane as an absorbent) for 48 hours. The prepared nanocomposite membranes were also used in the dye filtration removal process and the best result was obtained by using the membrane containing titanium dioxide nanotubes with the concentration, 0.05 g/(V(50).

Keywords


[1]. Supply, W. U. J. W., Programme, S. M. (2014). Progress on drinking water and sanitation: update, World Health Organization, ISBN 9789241507240. ##
[2]. Xue, Q., Pan, X., Li, X., Zhang, J. & Guo, Q. (2017). Effective enhancement of gas separation performance in mixed matrix membranes using core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons, Nanotechnology, 28, 6: 065702, DOI 10.1088/1361-6528/aa510d. ##
[3]. Huang, Z. M., Zhang, Y. Z. & Kotaki, M. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, 63, 15: 2223-2253, doi.org/10.1016/S0266-3538(03)00178-7. ##
[4]. Buchko, C. J.,Chen, L. C., Shen, Y. & Martin, B. C. (1999). Processing and microstructural characterization of porous biocompatible protein polymer thin films, Polymer, 40, 26: 7397-7407, doi.org/10.1016/S0032-3861(98)00866-0. ##
[5]. Zahmatkeshan. M., Adel, M., Bahrami, S. & Esmaeili, F. (2019). Polymer-based nanofibers: preparation, fabrication, and applications, in Handbook of Nanofibers, Springer, 215-261. ##
[6]. Van Driel, B., Kooyman, P. J. & Van den berg, K. J. (2016). A quick assessment of the photocatalytic activity of TiO2 pigments—From lab to conservation studio! Microchemical Journal, 126: 162-171, doi.org/10.1016/j.microc.2015.11.048. ##
[7]. Su, Y., Zhang, X., Han, S., Lei, L. (2008). Preparation of highly efficient photoelectrode of N–F-codoped TiO2 nanotubes, Journal of Photochemistry and Photobiology A: Chemistry, 194, 2-3: 152-160, doi.org/10.1016/j.jphotochem.2007.08.002. ##
[8]. Tahmasebpoor, R., Babalou, A. A. & Shahrouzi, J. R. (2017). Theoretical and experimental studies on the anodic oxidation process for synthesis of self-ordering TiO2 nanotubes: Effect of TiO2 nanotube lengths on photocatalytic activity, Journal of Environmental Chemical Engineering, 5, 1: 1227-1237, doi.org/10.1016/j.jece.2017.01.036. ##
[9]. Lee, K., Hahn, R., Altomare, M. & Selli, E. (2013). Intrinsic Au decoration of growing TiO2 nanotubes and formation of a high‐efficiency photocatalyst for H2 Production, Advanced materials, 25(42): 6133-6137, doi.org/10.1002/adma.201302581. ##
[10]. Jaleh, B., Madad, M. S.,Tabrizi, M. F. & Habibi, S. (2011). UV-degradation effect on optical and surface properties of polystyrene-TiO2 nanocomposite film, Journal of the Iranian Chemical Society, 8(1): S161-S168. ##
[11]. Pasichnyk, M., Václavíková, M. & Melnyk, I. (2021). Fabrication of polystyrene-acrylic/ZnO nanocomposite films for effective removal of methylene blue dye from water, Journal of Polymer Research, 28(2): 1-15. ##
[12]. Khan, S. U. M., Al-Shahry, M. & Ingler Jr, W. B. (2002). Efficient photochemical water splitting by a chemically modified n-TiO2, Science, 297(5590): 2243-2245, doi: 10.1126/science.1075035. ##
[13]. Kwak, S. Y., Kim, S. H., Kim, S. S. (2001). Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling 1, Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane, Environmental science and technology, 35(11): 2388-2394, doi.org/10.1021/es0017099. ##
[14]. You, S. J., Sembelante, G. U., Lu, S. C. & Damodar, R. A. (2012). Evaluation of the antifouling and photocatalytic properties of poly (vinylidene fluoride) plasma-grafted poly (acrylic acid) membrane with self-assembled TiO2, Journal of Hazardous Materials, 237: 10-19, doi.org/10.1016/j.jhazmat.2012.07.071. ##
[15]. Javed, H. M. A., Que, W., Ahmad, M. R., Ali, K., Irfan Ahmad, M., Haq, A. U. & Sharma, S. K. (2020). Perspective of nanomaterials in the performance of solar cells, Solar Cells: From Materials to Device Technology, Springer, 25-54. ##
[16]. Chen, H. Y., Zhang, T. L., Fan. J., Kuang, D. B. & Su, C. Y. (2013). Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells, ACS applied Materials and Interfaces, 5(18): 9205-9211, doi.org/10.1021/am402853q. ##
[17]. Dhandole, L. K., Mahadik, M. A., Kim, S. G., Chung, H. S., Seo, Y. S., Cho, M., Ryu, J. H. & Jang, J. S. (2017). Boosting photocatalytic performance of inactive rutile TiO2 nanorods under solar light irradiation: synergistic effect of acid treatment and metal oxide co-catalysts, ACS applied materials & interfaces, 9, 28: 23602-23613, doi.org/10.1021/acsami.7b02104. ##