[1]. Dong, H. & Blunt M. J. (2009). Pore-network extraction from micro-computerized-tomography images, Physical Review E, 80(3), 036307, doi.org/10.1103/PhysRevE.80.036307. ##
[2]. Niu, Y. (2020). Digital rock segmentation for petrophysical analysis with reduced user bias using convolutional neural networks, Water Resources Research, 56(2), e2019WR026597, doi.org/10.1029/2019WR026597. ##
[3]. Raeini, A. Q. (2017). Generalized network modeling: Network extraction as a coarse-scale discretization of the void space of porous media, Physical Review E, 96(1): 013312, doi.org/10.1103/PhysRevE.96.013312. ##
[4]. Silin, D., & Patzek, T. (2006). Pore space morphology analysis using maximal inscribed spheres, Physica A: Statistical mechanics and its applications, 371(2), 336-360, doi.org/10.1016/j.physa.2006.04.048. ##
[5]. Al-Kharusi, A.S. & Blunt, M.J. (2007). Network extraction from sandstone and Carbonate pore space images, Journal of Petroleum Science and Engineering, 56: 219-231, doi.org/10.1016/j.petrol.2006.09.003. ##
[6]. Rabbani, A., Jamshidi, S., & Salehi, S. (2014). An automated simple algorithm for realistic pore network extraction from micro-tomography images, Journal of Petroleum Science and Engineering, 123: 164-171, doi.org/10.1016/j.petrol.2014.08.020. ##
[7]. Barzegar, F., Masihi, M., & Tabar, M. A. (2020). A rigorous algebraic-analytical method for pore network extraction from micro-tomography images, Journal of Hydrology, 590, 125561, doi.org/10.1016/j.jhydrol.2020.125561. ##
[8]. Tembely, M. & A. AlSumaiti (2019). Deep learning for a fast and accurate prediction of complex carbonate rock permeability from 3D micro-CT images, Abu Dhabi International Petroleum Exhibition & Conference, Society of Petroleum Engineers, doi.org/10.2118/197457-MS. ##
[9] شکری، س.، صادقی م. ت. و احمدی مرودوست، م. (1392) ارائه روش ترکیبی پیش پردازش دادهها در ماشین بردار رگرسیون جهت پیشبینی کیفیت گازوئیل پالایششده، پژوهش نفت، 75،: (23)، 116 - 102. ##
[10]. Sudakov, O. (2019). Driving digital rock towards machine learning: Predicting permeability with gradient boosting and deep neural networks, Computers & geosciences, 127: 91-98, doi.org/10.1016/j.cageo.2019.02.002. ##
[11]. Alqahtani, N. Alzubaidi, F., Armstrong, R. T., Swietojanski, P., & Mostaghimi, P. (2020). Machine learning for predicting properties of porous media from 2d X-ray images. Journal of Petroleum Science and Engineering 184: 106514, doi.org/10.1016/j.petrol.2019.106514. ##
[12]. Mostaghimi, P., Blunt, M. J., & Bijeljic, B. (2013). Computations of absolute permeability on micro-CT images. Mathematical Geosciences, 45(1), 103-125. ##
[13]. Raeini, A. (2020). https://github.com/ImperialCollegeLondon/pnextract. ##
[14]. Bultreys, T., Lin, Q., Gao, Y., Raeini, A. Q., AlRatrout, A., Bijeljic, B., & Blunt, M. J. (2018). Validation of model predictions of pore-scale fluid distributions during two-phase flow. Physical Review E, 97(5), 053104, doi.org/10.1103/PhysRevE.97.053104. ##
[15]. Krizhevsky A, Sutskever I, Hinton GE, editors (2012). Imagenet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems. ##
[16]. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning, Nature, 521(7553), 436-444. ##
[17]. Karimpouli, S., & Fattahi, H. (2018). Estimation of P-and S-wave impedances using Bayesian inversion and adaptive neuro-fuzzy inference system from a carbonate reservoir in Iran. Neural Computing and Applications, 29(11), 1059-1072. ##