Surface Tension and Foaming Study of Solution of N-Methyldiethanolamine and Amine Functionalized UiO-66 Nanofluid

Document Type : Research Paper

Authors

1 Gas Research Division, Research Institute of Petroleum Industry (R.I.P.I.), Tehran, Iran

2 Nano Research Center, Research Institute of Petroleum Industry (R.I.P.I.), Tehran, Iran

3 Department of Applied Chemistry, Faculty of Sciences, University of Tehran, Iran

Abstract

In this study investigate the foaming behavior and surface tension of aqueous N-Methyldiethanolamine (MDEA) in the presence of amine functionalized UiO-66 (UiO-66-NH2) was studied. Foam volume and foam stability of solution containing of MDEA and MDEA + UiO-66-NH2 nanofluid was measured and effect of added UiO-66-NH2 to the MDEA solution on foam volume and foam stability was studied. Experiments were carried out at 313.15, 323.15 and 333.15 K and atmospheric pressures. Results show that addition of 0.1 % wt. of UiO-66-NH2 to the solution of 40% wt. of MDEA, decreases up to 25% in foam volume and up to 47 % in foam stability. Besides, effect of addition UiO-66-NH2 to the MDEA solution on surface tension was studied by LAUDA interfacial tensiometer model TD3, which uses the Du Noüy ring method and results of this study showed that addition of 0.1 % wt. of UiO-66-NH2 to the solution of 40% wt. of MDEA increases 0.8 % in surface tension of solution. A suitable model was used to investigate foam property and highlights that solutions behave linearly in decreasing foam formation and surface tension with an increasing of temperature. Foaming model was successfully developed and was fitted to experimental data and and maximum error were 0.9957 and 12%, respectively

Keywords

Main Subjects


 [1]. Ballard, D. (1966). Foaming in amine-based CO2 capture process, Hydrocarbon Process, 45: 137-144. ##
[2]. Ballard, D. (1986). Fom in amine system, Proceedings of Laurance Reid Gas Conditioning Conference, A1 – A38. ##
[3]. Pauley C. R. (1991) Face the facts about amine foaming, Chemical Engineering Progress, 87, 33 – 38, ISSN
0360-7275. ##
[4]. Stewart, E. J., Lanning, R. A. (1994), Reduce amine plant solvent losses, Hydrocarbon Processing, 73, 67–81. ##
[5]. Von Phul, S. A. (2001), Sweetening process foaming and abatement, 51st, Annual Lawrence Reid Gas Conditioning Conference, Norman, Oklahoma, February 25–28. ##
[6]. Agrawal, J.M. (1981). Method of defoaming in gas purification systems, U.S. Patent, 4,287, 1. ##
[7]. Perry, C. R. (1971). Filtration Method and Apparatus, U.S. Patent, 3, 568,405. ##
[8]. Thitakamol, B., Veawab, A., & Aroonwilas, A. (2009). Foaming in amine-based CO2 capture process: experiment, modeling and simulation. Energy Procedia, 1(1). 1381-1386, doi.org/10.1016/j.egypro.2009.01.181. ##
[9]. McCarthy, J., & Trebble, M. A. (1996). An experimental investigation into the foaming tendency of diethanolamine gas sweetening solutions. Chemical Engineering Communications, 144(1). 159-171, doi.org/10.1080/00986449608936451. ##
[10]. Thitakamol, B., & Veawab, A. (2008). Foaming behavior in CO2 absorption process using aqueous solutions of single and blended alkanolamines. Industrial & Engineering Chemistry Research, 47(1). 216-225, doi.org/10.1021/ie070366l. ##
[11]. Chen X., Freeman S.A., Rochelle G.T. (2011) Foaming of aqueous piperazine and monoethanolamine for CO2 capture, nternational journal of greenhouse gas control, 5: 381–386, doi.org/10.1016/j.ijggc.2010.09.006. ##
[12]. Alhseinat, E., Pal, P., Ganesan, A., & Banat, F. (2015). Effect of MDEA degradation products on foaming behavior and physical properties of aqueous MDEA solutions. International Journal of Greenhouse Gas Control, 37, 280-286, doi.org/10.1016/j.ijggc.2015.03.036. ##
[13]. Sedransk Campbell, K. L., Lapidot, T., & Williams, D. R. (2015). Foaming of CO2-loaded amine solvents degraded thermally under stripper conditions, Industrial & Engineering Chemistry Research, 54(31), 7751-7755, doi.org/10.1021/acs.iecr.5b01935. ##
[14]. Vahidi, M., Tavasoli, A., & Rashidi, A. M. (2016). Preparation of amine functionalized UiO-66, mixing with aqueous N-Methyldiethanolamine and application on CO2 solubility. Journal of Natural Gas Science and Engineering, 28, 651-659, doi.org/10.1016/j.jngse.2015.11.050. ##
[15]. ASTM, 2003. ASTM D892-Standard Test Method for Foaming Characteristics of Lubricating Oil. ASTM, West Conshohocken, PA. ##
[16]. Butt H.-J., Graf K., Kappl M. (2003) Physics and Chemistry of Interfaces, 3rd Edition, Wiley-VCH Publication, Berlin. ##
[17]. Du Noüy P. L., J. (1925). An interfacial tensiometer for universal use, Journal of General Physiology, 7: 625-631, doi: 10.1085/jgp.7.5.625. ##
[18]. Bikerman J. J. (1973). Foams, Springer-Verlag Publication, New York. ##
[19]. Lotfi R., Saboohi Y., Rashidi A. M. (2010). Numerical study of forced convective heat transfer of Nanofluids: Comparison of different approaches, International Communications in Heat and Mass Transfer, 37: 74–78, doi.org/10.1016/j.icheatmasstransfer.2009.07.013. ##
[20]. Hamilton, R. L., & Crosser, O. K. (1962). Thermal conductivity of heterogeneous two-component systems, Industrial & Engineering Chemistry Fundamentals, 1(3), 187-191, doi.org/10.1021/i160003a005. ##
[21]. Wang, H., & Chen, X. (2022). A comprehensive review of predicting the thermophysical properties of nanofluids using machine learning methods, Industrial & Engineering Chemistry Research, 61(40), 14711-14730, doi.org/10.1021/acs.iecr.2c02059. ##
[22]. Maiga, S. E. B., Palm, S. J., Nguyen, C. T., Roy, G., & Galanis, N. (2005). Heat transfer enhancement by using nanofluids in forced convection flows, International journal of Heat and Fluid Flow, 26(4), 530-546, doi.org/10.1016/j.ijheatfluidflow.2005.02.004. ##
[23]. Pinto, D. D., Monteiro, J. G. S., Johnsen, B., Svendsen, H. F., & Knuutila, H. (2014). Density measurements and modelling of loaded and unloaded aqueous solutions of MDEA (N-methyldiethanolamine), DMEA (N, N-dimethylethanolamine), DEEA (diethylethanolamine) and MAPA (N-methyl-1, 3-diaminopropane). International Journal of Greenhouse Gas Control, 25, 173-185, doi.org/10.1016/j.ijggc.2014.04.017. ##
[24]. Pilon, L., Fedorov, A. G., & Viskanta, R. (2001). Steady-state thickness of liquid–gas foams. Journal of Colloid and Interface Science, 242(2). 425-436, doi.org/10.1006/jcis.2001.7802. ##
[25]. Ogawa Y., Huin D., Gaye H., Tokumitsu N. (1993) Physical Model of Slag Foaming, ISIJ International, 33: 224–232. ##
[26]. Nik, O. G., Chen, X. Y., & Kaliaguine, S. (2012). Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation, Journal of Membrane Science, 413, 48-61, doi.org/10.1016/j.memsci.2012.04.003. ##
 
[27]. Luu, C. L., Van Nguyen, T. T., Nguyen, T., & Hoang, T. C. (2015). Synthesis, characterization and adsorption ability of UiO-66-NH2. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6(2), 025004, doi: 10.1088/2043-6262/6/2/025004. ##
[28]. Kandiah, M., Nilsen, M. H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., & Lillerud, K. P. (2010). Synthesis and stability of tagged UiO-66 Zr-MOFs. Chemistry of Materials, 22(24), 6632-6640, doi.org/10.1021/cm102601v. ##
[29]. Gomes Silva, C., Luz, I., Llabres i Xamena, F. X., Corma, A., & García, H. (2010). Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chemistry–A European Journal, 16(36), 11133-11138, doi.org/10.1002/chem.200903526. ##