Prediction of Interfacial Tension using Intermolecular Thermodynamic Potential Functions

Document Type : Research Paper

Authors

1 Petroleum Engineering Department, Tehran Polytechnic University, Tehran, Iran

2 Petroleum Engineering Department, Tehran Polytechnic University,Tehran, Iran

Abstract

In this study, surface tension modeling is developed using intermolecular thermodynamic potential function including the two-parameter Lennard-Jones model in a semi-analytical form and the three-parameter well-square model in a full-analytical form in a wide range of temperatures in the bulk scale. The comparison of the results for hydrocarbon fluids (light to heavy) and non-hydrocarbon fluids shows that the prediction of surface tension through the square-well model, due to its high flexibility and mathematical simplicity compared to the Lennard-Jones model, provides significant agreement with experimental data.

Keywords

Main Subjects


[1]. Leonard, C., Ferrasse, J. H., Boutin, O., Lefevre, S., & Viand, A. (2018). Measurements and correlations for gas liquid surface tension at high pressure and high temperature, AIChE Journal, 64(11), 4110-4117, doi.org/10.1002/aic.16216. ##
[2]. Gharagheizi, F., Eslamimanesh, A., Sattari, M., Mohammadi, A. H., & Richon, D. (2013). Development of corresponding states model for estimation of the surface tension of chemical compounds, AIChE Journal, 59(2), 613-621, doi.org/10.1002/aic.13824. ##
[3]. Fan, X., Yang, Z., Parker, D. J., Ng, B., Ding, Y., & Ghadiri, M. (2009). Impact of surface tension and viscosity on solids motion in a conical high shear mixer granulator. AIChE journal, 55(12), 3088-3098, doi.org/10.1002/aic.11926. ##
[4]. Zhang, K., Jia, N., & Liu, L. (2019). CO2 storage in fractured nanopores underground: phase behaviour study. Applied energy, 238, 911-928, doi.org/10.1016/j.apenergy.2019.01.088. ##
[5]. Escobedo, J., & Mansoori, G. A. (1996). Surface tension prediction for pure fluids. AIChE Journal, 42(5), 1425-1433, doi.org/10.1002/aic.690420523. ##
[6]. Escobedo, J., & Mansoori, G. A. (1998). Surface‐tension prediction for liquid mixtures, AIChE Journal, 44(10), 2324-2332, doi.org/10.1002/aic.690441021. ##
[7]. Macleod, D. B. (1923). On a relation between surface tension and density, Transactions of the Faraday Society, 19(July), 38-41, doi.org/10.1039/TF9231900038. ##
[8]. Sugden, S. (1924). VI.—The variation of surface tension with temperature and some related functions, Journal of the Chemical Society, Transactions, 125, 32-41, doi.org/10.1039/CT9242500032. ##
[9]. Zhang, K., Jia, N., Li, S., & Liu, L. (2018). Thermodynamic phase behaviour and miscibility of confined fluids in nanopores. Chemical Engineering Journal, 351, 1115-1128, doi.org/10.1016/j.cej.2018.06.088. ##
[10]. Zuo, Y. X., & Stenby, E. H. (1997). Corresponding‐states and parachor models for the calculation of interfacial tensions. The Canadian Journal of Chemical Engineering, 75(6), 1130-1137, doi.org/10.1002/cjce.5450750617.
[11]. Ayirala, S. C., & Rao, D. N. (2006). A new mechanistic Parachor model to predict dynamic interfacial tension and miscibility in multicomponent hydrocarbon systems. Journal of colloid and interface science, 299(1), 321-331, doi.org/10.1016/j.jcis.2006.01.068. ##
[12]. Tjahjono, M., & Garland, M. (2010). A new modified parachor model for predicting surface compositions of binary liquid mixtures. On the importance of surface volume representation, Journal of colloid and interface science, 345(2), 528-537, doi.org/10.1016/j.jcis.2010.01.067. ##
[13]. Lekner, J., & Henderson, J. R. (1977). Surface tension and energy of a classical liquid-vapour interface. Molecular Physics, 34(2), 333-359, doi.org/10.1080/00268977700101771. ##
[14]. Kirkwood, J. G., & Buff, F. P. (1949). The statistical mechanical theory of surface tension, The Journal of Chemical Physics, 17(3), 338-343, doi.org/10.1063/1.1747248. ##
[15]. Potoff, J. J., & Panagiotopoulos, A. Z. (2000). Surface tension of the three-dimensional Lennard-Jones fluid from histogram-reweighting Monte Carlo simulations, The Journal of Chemical Physics, 112(14), 6411-6415, doi.org/10.1063/1.481204. ##
[16]. Lee, J. K., Barker, J. A., & Pound, G. M. (1974). Surface structure and surface tension: Perturbation theory and Monte Carlo calculation, The Journal of Chemical Physics, 60(5), 1976-1980, doi.org/10.1063/1.1681303. ##
[17]. Park, S. H., Weng, J. G., & Tien, C. L. (2001). A molecular dynamics study on surface tension of microbubbles, International Journal of Heat and Mass Transfer, 44(10), 1849-1856, doi.org/10.1016/S0017-9310(00)00244-1. ##
[18]. Alejandre, J., Tildesley, D. J., & Chapela, G. A. (1995). Molecular dynamics simulation of the orthobaric densities and surface tension of water, The Journal of chemical physics, 102(11), 4574-4583, doi.org/10.1063/1.469505.
[19]. Ebner, C., Saam, W. F., & Stroud, D. (1976). Density-functional theory of simple classical fluids. I. Surfaces, Physical Review A, 14(6), 2264, doi.org/10.1103/PhysRevA.14.2264. ##
[20]. Wu, J. (2006). Density functional theory for chemical engineering: From capillarity to soft materials, AIChE journal, 52(3), 1169-1193, doi.org/10.1002/aic.10713. ##
[21]. Toxvaerd, S. R. (1971). Perturbation theory for nonuniform fluids: Surface tension, The Journal of chemical physics, 55(7), 3116-3120, doi.org/10.1063/1.1676556. ##
[22]. Weeks, J. D., Chandler, D., & Andersen, H. C. (1971). Role of repulsive forces in determining the equilibrium structure of simple liquids, The Journal of chemical physics, 54(12), 5237-5247, doi.org/10.1063/1.1674820. ##
[23]. Feng, D., Wu, K., Bakhshian, S., Hosseini, S. A., Li, J., & Li, X. (2020). Nanoconfinement effect on surface tension: perspectives from molecular potential theory, Langmuir, 36(30), 8764-8776, doi.org/10.1021/acs.langmuir.0c01050. ##
[24]. Rowlinson, J. S., & Widom, B. (2013). Molecular theory of capillarity. Courier Corporation. ##
[25]. Fowler, R. H. (1937). A tentative statistical theory of Macleod’s equation for surface tension, and the parachor, Proceedings of the Royal Society of London, Series A-Mathematical and Physical Sciences, 159(897), 229-246, doi.org/10.1098/rspa.1937.0069. ##
[26]. Kalikmanov, V. I., & Hofmans, G. C. J. (1994). The perturbation approach to the statistical theory of surface tension: new analytical results, Journal of Physics: Condensed Matter, 6(11), 2207, doi: 10.1088/0953-8984/6/11/009. ##
[27]. Verlet, L. (1968). Computer” experiments” on classical fluids. II. Equilibrium correlation functions. Physical Review, 165(1), 201, doi.org/10.1103/PhysRev.165.201. ##
[28]. Carnahan, N. F., & Starling, K. E. (1969). Equation of state for nonattracting rigid spheres, The Journal of chemical physics, 51(2), 635-636, doi.org/10.1063/1.1672048. ##
[29]. Zerón, I. M., Vega, C., & Benavides, A. L. (2018). Continuous version of a square-well potential of variable range and its application in molecular dynamics simulations, Molecular Physics, 116(21-22), 3355-3365, doi.org/10.1080/00268976.2018.1481232. ##
[30]. Song, Y. and E. Mason (1989) Statistical‐mechanical theory of a new analytical equation of state. The Journal of chemical physics. 91(12): pp. 7840-7853. ##
[31]. Barker, J. and D. Henderson (1976) Rev. Mod. Phys. ##
[32]. Prausnitz, J. M., Lichtenthaler, R. N., & De Azevedo, E. G. (1998). Molecular thermodynamics of fluid-phase equilibria. Pearson Education. ##
[33]. Singh, J. K., Kofke, D. A., & Errington, J. R. (2003). Surface tension and vapor–liquid phase coexistence of the square-well fluid. The Journal of chemical physics, 119(6), 3405-3412, doi.org/10.1063/1.1590313. ##
[34]. Hirschfelder, J. O., Curtiss, C. F., & Bird, R. B. (1954). Molecular theory of gases and liquids. New York: Wiley. ##