The Effect of Stirrer Speed on the Kinetics of Carbon Dioxide Hydrate Formation: An Experimental Investigation at Speeds of 0 – 10 rpm

Document Type : Research Paper

Author

Department of Chemical Engineering, University of Bojnord, , Iran

Abstract

Carbon dioxide is one of the most important greenhouse gases that plays a major role in global warming. Gas hydrates are one of the newest technologies available to remove this gas before entering the atmosphere. In this research, the effect of the stirrer speed on the most important kinetic parameters of carbon dioxide hydrate formation, i.e. amount of gas uptake, hydrate growth rate, storage capacity, and water to hydrate conversion percentage in a constant-volume constant-temperature reactor was investigated. The experiments were carried out in the presence of double distilled water at a temperature of 278.15 K and two pressures of 2.9 MPa. Vertical and horizontal stagnant conditions and rocking cell stirrer with speeds of 2, 4 and 10 rpm were used to investigate the effect of stirrer speed on the kinetics of carbon dioxide hydrate formation. The results of the experiments showed that the use of a stirrer promotes the kinetics of carbon dioxide hydrate formation. The use of a stirrer at a speed of 10 rpm increased the amount of gas uptake compared to the vertical and horizontal conditions, respectively, by 84.4 and 78.5 percent. The storage capacity of carbon dioxide hydrate formation increased by 72.6% and 67.7%, respectively, when using a stirrer at a speed of 10 rpm compared to the vertical and horizontal conditions.

Keywords

Main Subjects


[1]. Nicholls, R. J., & Leatherman, S. P. (1996). Adapting to sea‐level rise: Relative sea‐level trends to 2100 for the United States. Coastal Management, 24(4), 301-324, doi.org/10.1080/08920759609362298. ##
[2]. Pahlavanzadeh, H., Mohammadi, S., Mohammadi, A. H. (2019). Experimental measurement and thermodynamic modeling of hydrate dissociation conditions for (CO2 + TBAC + Cyclopentane + Water) system, The Journal of Chemical Thermodynamics, doi: 10.1016/j.jct.2019.105979. ##
[3]. Unfccc, V. (2015). Adoption of the Paris Agreement. I: proposal by the president (Draft Decision). United Nations Office, Geneva (Switzerland), 32. ##
[4]. Yu, C. H., Huang, C. H., & Tan, C. S. (2012). A review of CO2 capture by absorption and adsorption. Aerosol and Air Quality Research, 12(5), 745-769, doi.org/10.4209/aaqr.2012.05.0132. ##
[5]. Vega, F., Baena-Moreno, F. M., Fernández, L. M. G., Portillo, E., Navarrete, B., & Zhang, Z. (2020). Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale, Applied Energy, 260, 114313, doi.org/10.1016/j.apenergy.2019.114313. ##
[6]. Borhani, T. N., & Wang, M. (2019). Role of solvents in CO2 capture processes: The review of selection and design methods, Renewable and Sustainable Energy Reviews, 114, 109299, doi.org/10.1016/j.rser.2019.109299. ##
[7]. Ochedi, F. O., Yu, J., Yu, H., Liu, Y., & Hussain, A. (2021). Carbon dioxide capture using liquid absorption methods: a review, Environmental Chemistry Letters, 19, 77-109. ##
[8]. Yu, H., Li, J., Zhang, Y., Yang, S., Han, K., Dong, F., & Huang, H. (2019). Three‐in‐one oxygen vacancies: whole visible‐spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction, Angewandte Chemie International Edition, 58(12), 3880-3884, doi.org/10.1002/anie.201813967. ##
[9]. Li, S. F., Liu, Z. H., & Wang, X. J. (2019). A comprehensive review on positive cold energy storage technologies and applications in air conditioning with phase change materials, Applied Energy, 255, 113667, doi.org/10.1016/j.apenergy.2019.113667. ##
[10]. Zhang, Y., Song, Y., Jin, H., Wu, T., Xiao, H., Xiang, Y., & Shao, L. (2023). Study on CO2 absorption by novel choline chloride-diethylenetriamine-water deep eutectic solvents in a rotor-stator reactor, Chemical Engineering and Processing-Process Intensification, 184, 109299, doi.org/10.1016/j.cep.2023.109299. ##
[11]. Mohammadi, A., & Jodat, A. (2019). Investigation of the kinetics of TBAB+ carbon dioxide semiclathrate hydrate in presence of tween 80 as a cold storage material, Journal of Molecular Liquids, 293, 111433, doi.org/10.1016/j.molliq.2019.111433. ##
[12]. Cheng, C., Wang, F., Tian, Y., Wu, X., Zheng, J., Zhang, J., & Zhao, J. (2020). Review and prospects of hydrate cold storage technology, Renewable and Sustainable Energy Reviews, 117, 109492, doi.org/10.1016/j.rser.2019.109492. ##
[13]. Wang, X., Zhang, F., & Lipiński, W. (2020). Carbon dioxide hydrates for cold thermal energy storage: A review. Solar Energy, 211, 11-30, doi.org/10.1016/j.solener.2020.09.035. ##
[14]. Wang, F., Xia, X., Lv, Y., Cheng, C., Yang, L., Zhang, L., & Song, Y. (2022). Experimental study on the thermodynamic performance of a novel tetrabutylammonium bromide hydrate cold storage system, Journal of Energy Storage, 48, 103980, doi.org/10.1016/j.est.2022.103980. ##
[15]. Sloan, D. (2011) Natural Gas Hydrates in Flow Assurance. Boston: Gulf Professional Publishing, 1-11. ##
[16]. Sloan Jr, E. D., & Koh, C. A. (2007). Clathrate hydrates of natural gases, 3rd ed. ed: CRC Press, Taylor & Francis Group. ##
[17]. Seif, M., & Kamran-Pirzaman, A. (2020). Prediction of gas and refrigerant hydrate equilibrium conditions with and without thermodynamic inhibitors using simple empirical correlations, Journal of Petroleum Science and Technology, 10(4), 61-72, 10.22078/JPST.2021.4337.1700. ##
[18]. Ghaani, M. R., Schicks, J. M., & English, N. J. (2021). A review of reactor designs for hydrogen storage in clathrate hydrates, Applied Sciences, 11(2), 469, doi.org/10.3390/app11020469. ##
[19]. Egenolf-Jonkmanns, B., Bruzzano, S., Deerberg, G. (2011). Properties and application of additive enhanced CO2 hydrates.
[20]. محمدی، ا.، القاصی، ا. و عظیمی، ع. (2017). بررسی اثر فشار بر زمان القا و میزان مول‌های متان جذب شده در فرآیند تشکیل هیدرات شبه کلاتریت در سیستم آب + TBAC+ متان، پژوهش نفت، 27(2-96):160-70. ##
[21]. محمدی، ا.، پاکزاد، م. و عظیمی، ع. (2017). اندازه‌گیری میزان گاز مصرفی در فرآیند تشکیل هیدرات کربن‌دی‌اکسید در سیستم آب+ کربن‌دی‌اکسید+ تترا ان بوتیل آمونیوم فلوراید، پژوهش نفت، 27(1-96):164-72. ##
[22]. محمدی، ا.، عرب اسدی، ز.، جهانگیری، ع. و یاری فرد، ع (2017). پیش‌بینی شرایط ترمودینامیکی تشکیل هیدرات‌های شبه کلاتریت برای سیستم های (متان / کربن دی اکسید / نیتروژن) + TBAC + آب با استفاده از شبکه‌های عصبی مصنوعی، پژوهش نفت، 26(5-95)، 25-15. ##
[23]. Arjang, S., Manteghian, M., & Mohammadi, A. (2013). Effect of synthesized silver nanoparticles in promoting methane hydrate formation at 4.7 MPa and 5.7 MPa, Chemical Engineering Research and Design, 91(6),1050-4, doi.org/10.1016/j.cherd.2012.12.001. ##
[24]. Kamran-Pirzaman, A., Pahlavanzadeh, H., & Mohammadi, A. H. (2013). Hydrate phase equilibria of furan, acetone, 1, 4-dioxane, TBAC and TBAF, The Journal of Chemical Thermodynamics, 64:151-8, doi.org/10.1016/j.jct.2013.04.012. ##
[25]. Mohammadi, A., Manteghian, M., Haghtalab, A., Mohammadi, A. H., & Rahmati-Abkenar, M. (2014).  Kinetic study of carbon dioxide hydrate formation in presence of silver nanoparticles and SDS, Chemical Engineering Journal, 237:387-95, doi.org/10.1016/j.cej.2013.09.026. ##
[26]. Mohammadi, A., Manteghian, M., & Mohammadi, A. H. (2013). Dissociation data of semiclathrate hydrates for the systems of tetra-n-butylammonium fluoride (TBAF)+ methane+ water, TBAF+ carbon dioxide+ water, and TBAF+ nitrogen+ water, Journal of Chemical & Engineering Data, 58(12), 3545-50, doi.org/10.1021/je4008519. ##
[27]. Li, Y., Gambelli, A. M., Rossi, F., & Mei, S. (2021). Effect of promoters on CO2 hydrate formation: Thermodynamic assessment and microscale Raman spectroscopy/hydrate crystal morphology characterization analysis, Fluid Phase Equilibria, 550:113218, doi.org/10.1016/j.fluid.2021.113218. ##
[28]. Ganji, H., Manteghian, M., & Mofrad, H. R. (2007). Effect of mixed compounds on methane hydrate formation and dissociation rates and storage capacity, Fuel Processing Technology, 88(9), 891-5, doi.org/10.1016/j.fuproc.2007.04.010. ##
[29]. Ganji, H., Manteghian, M., Omidkhah, M. R., & Mofrad, H. R. (2007). Effect of different surfactants on methane hydrate formation rate, stability and storage capacity, Fuel, 86(3), 434-41, doi.org/10.1016/j.fuel.2006.07.032. ##
[30]. Farhadian, A., Heydari, A., Maddah, M., Hosseini, M. S., Sadeh, E., Peyvandi, K., & Varaminian, F. (2022). Renewable biosurfactants for energy-efficient storage of methane: An experimental and computational investigation, Chemical Engineering Journal, 427, 131723, doi.org/10.1016/j.cej.2021.131723. ##
[31]. Abedi-Farizhendi S.,Mohammadi A.H.,Mohammadi A.,Iranshahi M.,Manteghian M. (2019). Kinetic study of methane hydrate formation in the presence of carbon nanostructures, 16, 657-68, doi.org/10.1007/s12182-019-0327-5. ##
[32]. Mohammadi, A., Manteghian, M., Mohammadi, A. H., & Jahangiri, A. (2017). Induction time, storage capacity, and rate of methane hydrate formation in the presence of SDS and silver nanoparticles, Chemical Engineering Communications 204(12),1420-7, doi.org/10.1080/00986445.2017.1366903. ##
[33]. Arjang, S., Manteghian, M., & Mohammadi, A. (2013). Effect of synthesized silver nanoparticles in promoting methane hydrate formation at 4.7 MPa and 5.7 MPa, Chemical Engineering Research and Design, 91(6),1050-4, doi.org/10.1016/j.cherd.2012.12.001. ##
[34]. Hassan, H., Javidani, A. M., Mohammadi, A., Pahlavanzadeh, H., Abedi-Farizhendi, S., & Mohammadi, A. H. (2021).  Effects of graphene oxide nanosheets and Al2O3 nanoparticles on CO2 uptake in semi‐clathrate hydrates, Chemical Engineering & Technology, 44(1), 48-57, doi.org/10.1002/ceat.202000286. ##
[35]. Javidani, A. M., Abedi-Farizhendi, S., Mohammadi, A., Hassan, H., Mohammadi, A. H., Manteghian MJJoML (2020). The effects of graphene oxide nanosheets and Al2O3 nanoparticles on the kinetics of methane+ THF hydrate formation at moderate conditions, 316,113872. ##
[36]. Javidani, A. M., Abedi-Farizhendi, S., Mohammadi, A., Mohammadi, A. H., Hassan, H., & Pahlavanzadeh, H. (2020). Experimental study and kinetic modeling of R410a hydrate formation in presence of SDS, tween 20, and graphene oxide nanosheets with application in cold storage, Journal of Molecular Liquids, 304, 112665, doi.org/10.1016/j.molliq.2020.112665. ##
[37]. Manteghian, M., Safavi, S. M. M., & Mohammadi, A. (2013). The equilibrium conditions, hydrate formation and dissociation rate and storage capacity of ethylene hydrate in presence of 1, 4-dioxane, Chemical engineering journal, 217, 379-84, doi.org/10.1016/j.cej.2012.12.014. ##
[38]. Mohammadi, A., Manteghian, M., Haghtalab, A., Mohammadi, A. H., & Rahmati-Abkenar, M. (2014). Kinetic study of carbon dioxide hydrate formation in presence of silver nanoparticles and SDS, Chemical engineering journal, 237, 387-95, doi.org/10.1016/j.cej.2013.09.026. ##
[39]. Mohammadi, A., Pakzad, M., Mohammadi, A. H. & Jahangiri, A. (2018) Kinetics of (TBAF + CO2) semi-clathrate hydrate formation in the presence and absence of SDS, Petroleum Science, 15(2), 375–84, doi:10.1007/s12182-018-0221-6. ##
[40]. Mohammadi, A. (2020).  The roles TBAF and SDS on the kinetics of methane hydrate formation as a cold storage material, Journal of Molecular Liquids, 309:113175, doi.org/10.1016/j.molliq.2020.113175. ##
[41]. Roosta, H., Varaminian, F., & Khosharay, S. (2014). Experimental study of CO2 hydrate formation kinetics with and without kinetic and thermodynamic promoters, Scientia Iranica, 21(3), 753-762. ##
[42]. Gootam, D., Gaikwad, N., Kumar, R., & Kaisare, N. (2021). Modeling growth kinetics of methane hydrate in stirred tank batch reactors, ACS Engineering Au, 1(2), 148-59, doi.org/10.1021/acsengineeringau.1c00012. ##
[43]. Bian, H., Ai, L., Heng, J. Y., Maitland, G. C. (2023). Effects of chemical potential differences on methane hydrate formation kinetics, 452:139084, doi: 10.1016/j.cej.2022.139084. ##
[44]. Li, A., Jiang, L., & Tang, S. (2017). An experimental study on carbon dioxide hydrate formation using a gas-inducing agitated reactor, Energy, 134:629-37, doi.org/10.1016/j.energy.2017.06.023. ##
[45]. Munck, J., Skjold-Jørgensen, S., & Rasmussen, P. (1988). Computations of the formation of gas hydrates, Chemical Engineering Science, 43(10), 2661-72, doi.org/10.1016/0009-2509(88)80010-1. ##
[46]. Parrish, W. R., & Prausnitz, J. M. (1972). Dissociation pressures of gas hydrates formed by gas mixtures, Industrial & Engineering Chemistry Process Design and Development, 11(1), 26-35, doi.org/10.1021/i260041a006. ##
[47]. Smith, J. M. (2005) Introduction to Chemical Engineering Thermodynamics, 8th edition, New York: Mcgraw-Hill, 1-741.
[48]. McCain Jr, W. D. (1973). Properties of petroleum fluids, 2nd edition, McCain, William, Amazon, 1-560. ##
[49]. Manteghian, M., Safavi, S. M. M., & Mohammadi, A. (2013). The equilibrium conditions, hydrate formation and dissociation rate and storage capacity of ethylene hydrate in presence of 1, 4-dioxane, Chemical engineering journal, 217, 379-384, doi.org/10.1016/j.cej.2012.12.014. ##