[1]. Fettke, C. R. (1938). The Bradford oil field, Pennsylvania and New York. Mineral Resources Report M21, Pennsylvania Geological Survey, Commonwealth of Pennsylvania. ##
[2]. Jadhunandan, P. P., & Morrow, N. R. (1995). Effect of wettability on waterflood recovery for crude-oil/brine/rock systems, SPE Reservoir Engineering, 10(01), 40-46, doi.org/10.2118/22597-PA. ##
[3]. Boussour, S., Cissokho, M., Cordier, P., Bertin, H., & Hamon, G. (2009). Oil recovery by low salinity brine injection: Laboratory results on outcrop and reservoir cores, In SPE Annual Technical Conference and Exhibition?, SPE-124277, doi.org/10.2118/124277-MS. ##
[4]. Seccombe, J. C., Lager, A., Webb, K., Jerauld, G., & Fueg, E. (2008). Improving wateflood recovery: LoSal™ EOR field evaluation, In SPE Improved Oil Recovery Conference?, SPE-113480, doi.org/10.2118/113480-MS. ##
[5]. Lager, A., Webb, K. J., & Black, C. J. J. (2007). Impact of brine chemistry on oil recovery, In IOR 2007-14th European symposium on improved oil recovery, cp-24, European Association of Geoscientists & Engineers, doi.org/10.3997/2214-4609-pdb.24.A24. ##
[6]. Mokhtari, R., Ayatollahi, S., & Fatemi, M. (2019). Experimental investigation of the influence of fluid-fluid interactions on oil recovery during low salinity water flooding, Journal of Petroleum Science and Engineering, 182, 106194, doi.org/10.1016/j.petrol.2019.106194. ##
[7]. Van Cappellen, P., Charlet, L., Stumm, W., & Wersin, P. (1993). A surface complexation model of the carbonate mineral-aqueous solution interface, Geochimica et Cosmochimica Acta, 57(15), 3505-3518, doi.org/10.1016/0016-7037(93)90135-J. ##
[8]. Schindler, P. W., Fürst, B., Dick, R., & Wolf, P. U. (1976). Ligand properties of surface silanol groups. I. Surface complex formation with Fe3+, Cu2+, Cd2+, and Pb2+, Journal of Colloid and Interface Science, 55(2), 469-475, doi.org/10.1016/0021-9797(76)90057-6. ##
[9]. Hochella, M. F. (1990). Atomic structure, microtopography, composition, and reactivity of mineral surfaces, Reviews in Mineralogy and Geochemistry, 23(1), 87-132. ##
[10]. Stumm, W., & Morgan, J. J. (2012). Aquatic chemistry: chemical equilibria and rates in natural waters, John Wiley & Sons. ##
[11]. Pokrovsky, O. S., & Schott, J. (1999). Processes at the magnesium-bearing carbonates/solution interface, II. Kinetics and mechanism of magnesite dissolution, Geochimica et cosmochimica acta, 63(6), 881-897, doi.org/10.1016/S0016-7037(99)00013-7. ##
[12]. Prédali, J. J., & Cases, J. M. (1973). Zeta potential of magnesian carbonates in inorganic electrolytes, Journal of Colloid and Interface Science, 45(3), 449-458, doi.org/10.1016/0021-9797(73)90160-4. ##
[13]. Hiorth, A., Cathles, L. M., & Madland, M. V. (2010). The impact of pore water chemistry on carbonate surface charge and oil wettability, Transport in Porous Media, 85, 1-21. ##
[14]. Mahani, H., Keya, A. L., Berg, S., & Nasralla, R. (2017). Electrokinetics of carbonate/brine interface in low-salinity waterflooding: Effect of brine salinity, composition, rock type, and pH on?-potential and a surface-complexation model, SPE Journal, 22(01), 53-68, doi.org/10.2118/181745-PA. ##
[15]. Brady, P. V., & Krumhansl, J. L. (2012). A surface complexation model of oil–brine–sandstone interfaces at 100 C: Low salinity waterflooding, Journal of Petroleum Science and Engineering, 81, 171-176, doi.org/10.1016/j.petrol.2011.12.020. ##
[16]. Sanaei, A., Tavassoli, S., & Sepehrnoori, K. (2019). Investigation of modified Water chemistry for improved oil recovery: Application of DLVO theory and surface complexation model, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 574, 131-145, doi.org/10.1016/j.colsurfa.2019.04.075. ##
[17]. Aslan, S., Fathi Najafabadi, N., & Firoozabadi, A. (2016). Non-monotonicity of the contact angle from NaCl and MgCl2 concentrations in two petroleum fluids on atomistically smooth surfaces. Energy & Fuels, 30(4), 2858-2864, doi.org/10.1021/acs.energyfuels.6b00175. ##
[18]. Karadimitriou, N. K., Mahani, H., Steeb, H., & Niasar, V. (2019). Nonmonotonic effects of salinity on wettability alteration and two‐phase flow dynamics in PDMS micromodels. Water Resources Research, 55(11), 9826-9837, doi.org/10.1029/2018WR024252. ##