Analysis of Combustion Characteristics and Investigation of the Cause of Thermal Stress in the Gas Refinery Flare, using the CFD Technique

Document Type : Research Paper

Authors

1 Gas Division, Nanotechnology Research Center, Faculty of Research and Development in Downstream Petroleum Industry, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

2 Process Engineering Unit, South Petroleum Gas Company, Asaluyeh, Iran

Abstract

In this study, CFD simulation of low-pressure flare (LP) of the gas refinery has been investigated to evaluate the effects of geometric parameters of flare tip, especially the effect of steam injection on the combustion characteristics of flame, as well as no flame backflow. The computational model was developed by considering related transport phenomena (momentum, heat, mass, radiation, turbulence and chemical reactions). In order to create the suitable computational mesh, finer meshes were selected around the steam injection nozzles and internal parts of the flare. The results of the developed computational model include temperature and velocity profiles (shape and appearance of the flame), profiles of the gas species, tracking of the injected steam, as well as profiles of the combustion products. The results of the CFD simulation showed that due to the injection of steam from the nozzles in the center of the flare tip and its very high speed, a complex hydrodynamics is created in the opening of the flare tip, which leads to the formation of vortices. Due to the formation of a vortex at the flare tip, some of the surrounding air is drawn into the flare tip, which is in the form of a flame in the gas seal to the perforated plate of the flare tip. For this reason, the body temperature of the flare tip increases up to 2200K in some parts of the perforated plate and gas seal plates. The results of the simulation regarding the return of the flame into the flare tip are consistent with the observations in the industrial unit. The internal body of the LP flare tip in the industrial unit due to the flame being drawn into the flare tip faced with thermal stresses, and as a result causes its rapid destruction.

Keywords

Main Subjects


[1]. مدیریت بهداشت و ایمنی محیط زیست شرکت ملی پالایش و پخش، (1391)، آشنایی با فلر.##
[2]. Stone, D. K., Lynch, S. K., Pandullo, R. F., Evans, L. B., & Vatavuk, W. M. (1992). Flares. Part I: Flaring technologies for controlling VOC-containing waste streams, Journal of the Air & Waste Management Association, 42(3), 333-340, doi.org/10.1080/10473289.1992.10466996. ##
[3]. Stone, D. K., Lynch, S. K., Pandullo, R. F., Evans, L. B., & Vatavuk, W. M. (1992). Flares. Part II. Capital and annual costs, Journal of the Air & Waste Management Association, 42(4), 488-493, doi.org/10.1080/10473289.1992.10467008. ##
[4]. Bahadori, A. (2014). Chapter 6-Blow-Down and Flare Systems. Natural Gas Processing. Boston: Gulf Professional Publishing, 275-312. ##
[5]. Karthikeyan, B. (2020). Manage Change to Flare Systems. Chemical Engineering Progress, 116(1), 36-39.
[6]. AKTAS, Y., & ÖZARIK, Ö. (2014). Dynamics of operation for flare systems. Petroleum technology quarterly, 19(2), ISSN 1362-363X. ##
[7]. Kumar, A., Phadatare, S., & Deore, P. (2020). A guide on smokeless flaring: air/steam assisted and high pressure flaring, International Journal of Engineering Applied Sciences and Technology, 4, 12, ISSN No. 2455-2143. ##  
[8]. Huang R.F., Chang J.M., (1994), The stability and visualized flame and flow structures of a combusting jet in cross flow, Combust. Flame, 98(3), 267–278, doi.org/10.1016/0010-2180(94)90241-0. ##
[9]. Bourguignon, E., Johnson, M. R., & Kostiuk, L. W. (1999). The use of a closed-loop wind tunnel for measuring the combustion efficiency of flames in a cross flow, Combustion and flame, 119(3), 319-334, doi.org/10.1016/S0010-2180(99)00068-1. ##
[10]. Johnson, M. R., Wilson, D. J., & Kostiuk, L. W. (2001). A fuel stripping mechanism for wake-stabilized jet diffusion flames in crossflow, Combustion Science and Technology, 169(1), 155-174, doi.org/10.1080/00102200108907844. ##
[11]. Kostiuk, L., Johnson, M., & Thomas, G. (2004). University Of Alberta Flare Research Project: final report November 1996-September, 2. ##
[12]. Castineira, D., & Edgar, T. F. (2006). CFD for simulation of steam-assisted and air-assisted flare combustion systems, Energy & fuels, 20(3), 1044-1056, doi.org/10.1021/ef050332v. ##
[13]. Castiñeira, D., & Edgar, T. F. (2008). Computational fluid dynamics for simulation of wind-tunnel experiments on flare combustion systems, Energy & fuels, 22(3), 1698-1706, doi.org/10.1021/ef700545j. ##
[14]. Castiñeira, D., & Edgar, T. F. (2008). CFD for simulation of crosswind on the efficiency of high momentum jet turbulent combustion flames, Journal of Environmental Engineering, 134(7), 561-571, doi.org/10.1061/(ASCE)0733-9372(2008)134:7(561). ##
[15]. Lawal, M. S., Fairweather, M., Ingham, D. B., Ma, L., Pourkashanian, M., & Williams, A. (2010, January). Computational Study of a Lifted Turbulent Jet Flame in a Cross-flow: Flame Length and Emissions, In Proceedings of the 2nd Annual Gas Processing Symposium, 237-245, Elsevier, doi.org/10.1016/S1876-0147(10)02026-4. ##
[16]. Langman, A. S., & Nathan, G. J. (2011). Influence of a combustion-driven oscillation on global mixing in the flame from a refinery flare, Experimental thermal and fluid science, 35(1), 199-210, doi.org/10.1016/j.expthermflusci.2010.09.002. ##
[17]. Singh, K. D., Dabade, T., Vaid, H., Gangadharan, P., Chen, D., Lou, H. H., & Martin, C. B. (2012). Computational fluid dynamics modeling of industrial flares operated in stand-by mode, Industrial & Engineering Chemistry Research, 51(39), 12611-12620, doi.org/10.1021/ie300639f. ##
[18]. Singh, K. D., Gangadharan, P., Chen, D. H., Lou, H. H., Li, X., & Richmond, P. (2014). Computational fluid dynamics modeling of laboratory flames and an industrial flare, Journal of the Air & Waste Management Association, 64(11), 1328-1340, doi.org/10.1080/10962247.2014.948229. ##
[19]. جوادی س.، عنبرسوز م.، قبادی ع. و کهرم م.، (1393)، بررسی عددی اثر باد بر شکل شعله در مشعل بلند پالایشگاه سرخون و قشم، نشریة علوم کاربردی و محاسباتی در مکانیک، جلد 28، (2) 16. ##
[20]. صباغ ر. و رهبر ن.، (1394)، بررسی تأثیر شکل هندسی بر بیشینه دمای جداره نوک فلر و توزیع آلاینده‌های خروجی آن، مجله مدل‌سازی در مهندسی، جلد 4، 4. ##
[21]. Javadi, M., Anbarsooz, M., Ghobadi, A., & Kahrom, M. (2017). Numerical Investigation of Wind Effects on the Flame Shape of Sarkhoon and Qeshm’s Refinery Flares, Journal of Applied and Computational Sciences in Mechanics, 28(2). ##
[22]. Irani, M., & Bahjat, Y. (2023). Investigating the Medium Pressure Flare Performance of South Pars Gas Refinery in Design and Operational Conditions Using CFD Simulation, Journal of Farayandno, 18(82), 5-23. ##