Simple and Rapid Synthesis of Magnesium Spinel Catalysts for Production of Benzyl Toluene

Document Type : Research Paper

Authors

Material and Chemical Engineering Faculty, Esfarayen University of Technology, North Khorasan, Esfarayen, Iran

Abstract

In this research MgFe2O4 and MgAl2O4 spinels were synthesized by simple and fast mechanochemical method. Using high-speed ball-milling causes diminishing the ball milling time. Physiochemical analysis including XRD, TEM, FESEM, EDX-Dot mapping, BET-BJH and Magnetic Susceptibility were used to define the physicochemical properties of synthesized samples. Also, pulse chromatographic titration methodology was used to evaluate acidity of synthesized samples. The XRD results confirmed the successful synthesis of both spinels and indicated that two samples have been synthesized with large crystals. Also, the results of other analysis showed good agreement with each other. To investigate catalyst activity of synthesized spinels, the catalysts were used in the production of benzyl toluene from toluene and benzyl chloride by using microwaves. In reaction condition of 3 minutes and 300 watt microwave no conversion was observed for MgAl2O4 while in the same reaction conditions, conversion of MgFe2O4 was achieved to be 100% and even after 3 times reused of this sample no change was observed in the conversion. According to the results of catalyst performance and high magnetic susceptibility of MgFe2O4 which is an effective factor to separate the catalyst from the reaction mixture, it seems that there can be have high hopes for the economic production of this catalyst.

Keywords

Main Subjects


[1]. Sickafus, K. E., Wills, J. M., & Grimes, N. W. (1999). Structure of spinel, Journal of the American Ceramic Society, 82(12), 3279-3292, doi: 10.1111/j.1151-2916. 1999.tb02241. x.##
[2]. Sharma, P., Das, C., Indris, S., Bergfeldt, T., Mereacre, L., Knapp, M., & Darma, M. S. D. (2020). Synthesis and characterization of a multication doped Mn spinel, LiNi0. 3Cu0. 1Fe0. 2Mn1. 4O4, as 5 V positive electrode material, ACS omega, 5(36), 22861-22873. doi: 10.1021/acsomega.0c02174. ##
[3]. Rashdan, S. A., & Hazeem, L. J. (2020). Synthesis of spinel ferrites nanoparticles and investigating their effect on the growth of microalgae Picochlorum sp. Arab Journal of Basic and Applied Sciences, 27(1), 134-141. doi: 10.1080/25765299.2020.1733174. ##
[4]. Rahmani B, Haghighi M. (2018). Thermochemical synthesis of Mg-Al ceramic spinel as support for MgO/MgAl2O4 nanocatalyst toward conversion of vegetable oil to green fuel, Journal of Petroleum Research, 28(97-5), 59-75. doi: 10.22078/pr.2018.2905.2355. ##
[5]. Kushwaha, A. K., Uğur, Ş., Akbudak, S., & Uğur, G. Ö. K. A. Y. (2017). Investigation of structural, elastic, electronic, optical and vibrational properties of silver chromate spinels: Normal (CrAg2O4) and inverse (Ag2CrO4). Journal of Alloys and Compounds, 704, 101-108, doi: http://dx.doi.org/10.1016/j.jallcom.2017.02.055. ##
[6]. Rahmanivahid, B., Pinilla-de Dios, M., Haghighi, M., & Luque, R. (2019). Mechanochemical synthesis of CuO/MgAl2O4 and MgFe2O4 spinels for vanillin production from isoeugenol and vanillyl alcohol, Molecules, 24(14), 2597, doi.org/10.3390/molecules24142597. ##
[7]. Amani, T., Haghighi, M., & Rahmanivahid, B. (2019). Microwave-assisted combustion design of magnetic Mg–Fe spinel for MgO-based nanocatalyst used in biodiesel production: Influence of heating-approach and fuel ratio. Journal of Industrial and Engineering Chemistry, 80, 43-52, doi: https://doi.org/10.1016/j.jiec.2019.07.029. ##
[8]. Hashemzehi, M., Pirouzfar, V., Nayebzadeh, H., & Su, C. H. (2022). Modelling and optimization of main independent parameters for biodiesel production over a Cu0. 4Zn0. 6Al2O4 catalyst using an RSM method, Journal of Chemical Technology & Biotechnology, 97(1), 111-119, doi: https://doi.org/10.1002/jctb.6916. ##
[9]. Sarvestani, N. S., Fard, M. H. A., Tabasizadeh, M., Nayebzadeh, H., Arora, P., Verma, P., & Brown, R. J. (2022). Synthesis and evaluation of catalytic activity of NiFe2O4 nanoparticles in a diesel engine: An experimental investigation and Multi-Criteria Decision-Making approach, Journal of Cleaner Production, 365, 132818, doi: https://doi.org/10.1016/j.jclepro.2022.132818. ##
[10]. Dehghani, F., Hashemian, S., & Shibani, A. (2017). Effect of calcination temperature for capability of MFe2O4 (M= Co, Ni and Zn) ferrite spinel for adsorption of bromophenol red. Journal of Industrial and Engineering Chemistry, 48, 36-42, doi: http://dx.doi.org/10.1016/j.jiec.2016.11.022. ##
[11]. Ganesh, I. (2011). Fabrication of magnesium aluminate (MgAl2O4) spinel foams, Ceramics International, 37(7), 2237-2245, doi: http://dx.doi.org/10.1016/j.ceramint.2011.03.068. ##
[12]. Villalobos, G. R., Sanghera, J. S., & Aggarwal, I. D. (2005). Degradation of magnesium aluminum spinel by lithium fluoride sintering aid, Journal of the American Ceramic Society, 88(5), 1321-1322, doi: 10.1111/j.1551-2916.2005.00209. x. ##
[13]. Vahid, B. R., & Haghighi, M. (2016). Urea-nitrate combustion synthesis of MgO/MgAl2O4 nanocatalyst used in biodiesel production from sunflower oil: Influence of fuel ratio on catalytic properties and performance, Energy Conversion and Management, 126, 362-372, doi.org/10.1016/j.enconman.2016.07.050. ##
[14]. Alvar, E. N., Rezaei, M., Alvar, H. N., Feyzallahzadeh, H., & Yan, Z. F. (2009). Synthesis of nanocrystalline MgAl2O4 spinel by using ethylene diamine as precipitation agent. Chemical Engineering Communications, 196(11), 1417-1424, doi:10.1080/00986440902939012. ##
[15]. Vahid, B. R., Haghighi, M., Toghiani, J., & Alaei, S. (2018). Hybrid-coprecipitation vs. combustion synthesis of Mg-Al spinel based nanocatalyst for efficient biodiesel production, Energy Conversion and Management, 160, 220-229, doi: https://doi.org/10.1016/j.enconman.2018.01.030. ##
[16]. Hashemzehi, M., Saghatoleslami, N., & Nayebzadeh, H. (2016). A study on the structure and catalytic performance of ZnxCu1− xAl2O4 catalysts synthesized by the solution combustion method for the esterification reaction. Comptes Rendus Chimie, 19(8), 955-962, doi: http://dx.doi.org/10.1016/j.crci.2016.05.006. ##
[17]. Yadav, R. S., Havlica, J., Hnatko, M., Šajgalík, P., Alexander, C., Palou, M., & Enev, V. (2015). Magnetic properties of Co1− xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling. Journal of Magnetism and Magnetic Materials, 378, 190-199, doi: http://dx.doi.org/10.1016/j.jmmm.2014.11.027. ##
[18]. Latifi, S. M., Azghandi, J. B., Salehirad, A., & Parvini, M. (2017). A comparative study on H2S removal using Mg–Al spinel (MgAl2O4) and MgO/Al2O3 nanocomposites, Chinese Journal of Chemical Engineering, 25(9), 1329-1334, doi: http://dx.doi.org/10.1016/j.cjche.2016.12.002. ##
[19]. Zu, Y., Zhao, Y., Xu, K., Tong, Y., & Zhao, F. (2016). Preparation and comparison of catalytic performance for nano MgFe2O4, GO-loaded MgFe2O4 and GO-coated MgFe2O4 nanocomposites, Ceramics International, 42(16), 18844-18850, doi: http://dx.doi.org/10.1016/j.ceramint.2016.09.030. ##
[20]. Shetty, K., Lokesh, S. V., Rangappa, D., Nagaswarupa, H. P., Nagabhushana, H., Anantharaju, K. S., & Sharma, S. C. (2017). Designing MgFe2O4 decorated on green mediated reduced graphene oxide sheets showing photocatalytic performance and luminescence property, Physica B: Condensed Matter, 507, 67-75, doi: http://dx.doi.org/10.1016/j.physb.2016.11.021. ##
[21]. Yousefi S, Haghighi M, Rahmani Vahid B. (2018). Facile and efficient microwave combustion fabrication of Mg-spinel as support for MgO nanocatalyst used in biodiesel production from sunflower oil: Fuel type approach. Chemical Engineering Research and Design, 138, 506-518. doi: https://doi.org/10.1016/j.cherd.2018.09.013. ##
[22]. Yousefi, S., Haghighi, M., & Vahid, B. R. (2018). Facile and efficient microwave combustion fabrication of Mg-spinel as support for MgO nanocatalyst used in biodiesel production from sunflower oil: Fuel type approach. Chemical Engineering Research and Design, 138, 506-518, doi.org/10.1016/j.cherd.2018.09.013. ##
[23]. Meshkani, F., Golesorkh, S. F., Rezaei, M., & Andache, M. (2017). Nickel catalyst supported on mesoporous MgAl2O4 nanopowders synthesized via a homogenous precipitation method for dry reforming reaction. Research on Chemical Intermediates, 43, 545-559, doi: 10.1007/s11164-016-2639-z. ##
[24]. Mosayebi Z, Rezaei M, Hadian N, Kordshuli FZ, Meshkani F. (2012). Low temperature synthesis of nanocrystalline magnesium aluminate with high surface area by surfactant assisted precipitation method: Effect of preparation conditions. Materials Research Bulletin, 47(9), 2154-2160. doi: http://dx.doi.org/10.1016/j.materresbull.2012.06.010. ##
[25]. Mosayebi, Z., Rezaei, M., Hadian, N., Kordshuli, F. Z., & Meshkani, F. (2012). Low temperature synthesis of nanocrystalline magnesium aluminate with high surface area by surfactant assisted precipitation method: Effect of preparation conditions, Materials Research Bulletin, 47(9), 2154-2160, doi.org/10.1016/j.materresbull.2012.06.010. ##
[26]. A.; KRHG, R.; MM, C.; FD, E. CD. (2000). Microwave synthesis of alumina powders. American Ceramic Society bulletin 79, 63-67. ##
[27]. de Moraes, G. G., & Novaes de Oliveira, A. P. (2015). Synthesis of the MgAl2O4 spinel obtained via combustion reaction using glycerine from the biodiesel as a fuel for producing cellular ceramics, In Materials Science Forum, 820, 96-101, Trans Tech Publications Ltd, doi.org/10.4028/www.scientific.net/MSF.820.96. ##
[28]. دلیر خیرالهی‌نژاد، پ.، حقیقی، م.، جدیری، ن. و رحمانی، ف. (2017). سنتز مقایسه‌ای نانوکاتالیست  Ni/Z25M75 به‌روش تلقیح و سل-ژل جهت استفاده در تبدیل اتان به اتیلن در حضور دی‌اکسید‌کربن و اکسیژن. پژوهش نفت، 27(1-96)، 105-92، doi: .10.22078/pr.2017.1792.1873. ##
[29]. Sharifi, M., Haghighi, M., Rahemi, N. & Rahmani, F. (2017). A comparative synthesis and physicochemical characterizations of Ni/Al2O3 nanocatalyst via sequential impregnation and sol-gel methods used for dry reforming of methane, Journal of Petroleum Research, 27(96-2), 146-159, doi: 10.22078/pr.2017.752. ##
[30]. Jiten, C., Rawat, M., Bhattacharya, A., Singh, K. C. (2017). (Na0.5K0.5) NbO3 nanocrystalline powders produced by high energy ball milling and corresponding ceramics, Materials Research Bulletin, 90, 162-169. doi: http://dx.doi.org/10.1016/j.materresbull.2017.02.031. ##
[31]. Yang, M., Guo, Z., Xiong, J., Liu, F. & Qi, K. (2017). Microstructural changes of (Ti,W)C solid solution induced by ball milling, International Journal of Refractory Metals and Hard Materials, 66, 83-87, doi: http://dx.doi.org/10.1016/j.ijrmhm.2017.03.008. ##
[32]. Badapanda, T., Sarangi, S., Behera, B., Parida, S., Saha, S., Sinha, T. P., Ranjan, R. & Sahoo, P. K. (2015). Optical and dielectric study of strontium modified barium zirconium titanate ceramic prepared by high energy ball milling, Journal of Alloys and Compounds, 645, 586-596. doi: http://dx.doi.org/10.1016/j.jallcom.2015.05.005. ##
[33]. Chen C, Li G, Liu Y. (2015). Synthesis of ZnGa2O4 assisted by high-energy ball milling and its gas-sensing characteristics, Powder Technology, 281, 7-11. doi: http://dx.doi.org/10.1016/j.powtec.2015.04.041. ##
[34]. Zhang, J., Zhang, J., Cai, W., Zhang, F., Yu, L., Wu, Z. & Zhang, Z. (2012). Improving electrochemical properties of spinel lithium titanate by incorporation of titanium nitride via high-energy ball-milling, Journal of Power Sources, 211, 133-139, doi: http://dx.doi.org/10.1016/j.jpowsour.2012.03.088. ##
[35]. Gateshki, M., Petkov, V., Pradhan, S. K. & Vogt, T. (2005). Structure of nanocrystalline MgFe2O4 from X-ray diffraction, Rietveld and atomic pair distribution function analysis, Journal of Applied Crystallography, 38(5), 772-779, doi: doi:10.1107/S0021889805024477. ##
[36]. Ahsanzadeh-Vadeqani, M., Razavi, R. S., Barekat, M., Borhani, G. H., Mishra, A. K. (2017). Preparation of yttria nanopowders for use in transparent ceramics by dry ball-milling technique, Journal of the European Ceramic Society, 37(5), 2169-2177, doi: http://dx.doi.org/10.1016/j.jeurceramsoc.2016.12.006. ##
[37]. Chen, D., Zhang, Y., Chen, B., Kang, Z. (2013). Coupling effect of microwave and mechanical forces during the synthesis of ferrite nanoparticles by microwave-assisted ball milling, Industrial and Engineering Chemistry Research, 52(39), 14179-14184, doi: 10.1021/ie401890j. ##
[38]. Zhang, Y., Wu, Y., Qin, Q., Wang, F. & Chen, D. (2016). A study of the mechanism of microwave-assisted ball milling preparing ZnFe2O4, Journal of Magnetism and Magnetic Materials, 409, 6-9, doi: http://dx.doi.org/10.1016/j.jmmm.2016.02.066. ##
[39]. Bafrooei, H. B. & Ebadzadeh , T. (2013). MgAl2O4 nanopowder synthesis by microwave assisted high energy ball-milling, Ceramics International, 39(8), 8933-8940, doi: http://dx.doi.org/10.1016/j.ceramint.2013.04.089. ##
[40]. Fattahi, B., Haghighi, M., Rahmanivahid, B. & Vardast, N. (2022). Green Fuel Production from Sunflower Oil Using Nanocatalysts Based on Metal Oxides (SrO, La2O3, CaO, MgO, Li2O) Supported over Combustion‐synthesized Mg-spinel, Chemical Engineering Research and Design, 183, 411-423. doi: https://doi.org/10.1016/j.cherd.2022.05.026. ##
[41]. Sajjadi, S. M., Haghighi, M. & Rahmani, F. (2022). On the synergic effect of various anti-coke materials (Ca–K–W) and glow discharge plasma on Ni-based spinel nanocatalyst design for syngas production via hybrid CO2/O2 reforming of methane, Journal of Natural Gas Science and Engineering, 108, 104810, doi: https://doi.org/10.1016/j.jngse.2022.104810. ##
[42]. Yang, L., Fan, C., Luo, L., Chen, Y., Wu, Z., Qin, Z., & Wang, J. (2021). Preparation of Pd/SiO2 catalysts by a simple dry ball-milling method for lean methane oxidation and probe of the state of active pd species, Catalysts, 11(6), 725, doi.org/10.3390/catal11060725. ##
[43]. Gracia, M. J., Losada, E., Luque, R., Campelo, J. M., Luna, D., Marinas, J. M., & Romero, A. A. (2008). Activity of Gallium and Aluminum SBA-15 materials in the Friedel–Crafts alkylation of toluene with benzyl chloride and benzyl alcohol. Applied Catalysis A: General, 349(1-2), 148-155, doi: http://dx.doi.org/10.1016/j.apcata.2008.07.023. ##
[44]. Campelo, J. M., Luna, D., Luque, R., Marinas, J. M., Romero, A. A., Calvino, J. J., & Rodriguez-Luque, M. P. (2005). Synthesis of acidic Al-MCM-48: Influence of the Si/Al ratio, degree of the surfactant hydroxyl exchange, and post-treatment in NH4F solution. Journal of Catalysis, 230(2), 327-338, doi: http://dx.doi.org/10.1016/j.jcat.2004.12.004. ##
[45]. Pineda, A., Balu, A. M., Campelo, J. M., Luque, R., Romero, A. A., & Serrano-Ruiz, J. C. (2012). High alkylation activities of ball-milled synthesized low-load supported iron oxide nanoparticles on mesoporous aluminosilicates, Catalysis Today, 187(1), 65-69, doi: http://dx.doi.org/10.1016/j.cattod.2012.02.028. ##
[46]. Shrinivas V. Ghodke UVC. (2015). Friedel-Crafts alkylation and acylation of aromatic compounds under solvent free conditions using solid acid catalysts. Int J Chem Stud, 2(5), 27-34. ##