Oxidative Desulfurization Process for Natural-Gas Condensate Based on Chemical Oxidation by Fe3O4@SiO2@Polyionene Core-Shell-Shell as a Novel Magnetite Nanoparticle Catalyst in the presence of K2S2O8 and H2O2

Document Type : Research Paper

Authors

1 Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak

2 Department of Chemistry, Islamic Azad University, Kermanshah Branch, Kermanshah, Iran

3 Department of Chemical Engineering, Kermanshah University of Technology, Kermanshah, Iran

Abstract

More and more rigid requirements for sulfur contents of motor fuels stimulate search for new ways of purification of hydrocarbon raw materials from sulfur compounds and modernization of existing desulfurization technologies. The main classes of gas and oil-sulfur compounds are thiols, dialkyl and cycloalkyl sulfides, alkyl aryl sulfides, as well as heteroaromatic compounds, specifically thiophene derivatives. The sulfur content of Ilam refinery′s natural gas condensate is very high (4150 ppm) and should be removed to reduce the sulfur content. Sulfur components are traditionally considered as undesirable contaminants of liquid hydrocarbon fuels. Sulfur oxidation appears a very promising route for obtaining ultralow-sulfur fuels requested worldwide by the new regulation mandates. This paper describes the oxidation of several kinds of S-containing molecules in Natural-Gas Condensate with hydrogen peroxide in a two liquid–liquid (L–L) phase system with Fe3O4@SiO2@polyionene/K2S2O8 Core-Shell-shell Magnetite Nanoparticle Catalyst under atmospheric pressure. The influence of the reaction temperature, the reaction time, the solvent, the volume ratio of the oxidant (H2O2) and the natural gas condensate were examined. 

Keywords

Main Subjects


[1]. Shin, S., Yang, H., Sakanishi, K., Mochida, I., Grudoski, D. A., & Shinn, J. H. (2001). Inhibition and deactivation in staged hydrodenitrogenation and hydrodesulfurization of medium cycle oil over NiMoS/Al2O3 catalyst. Applied Catalysis A: General, 205(1-2), 101-108, doi.org/10.1016/S0926-860X (00)00541-X.##
[2]. Anisimov, A. V., & Tarakanova, A. V. (2009). Oxidative desulfurization of hydrocarbon raw materials. Russian Journal of General Chemistry, 79, 1264-1273. ##
[3]. Turaga, U. T., Ma, X., & Song, C. (2003). Influence of nitrogen compounds on deep hydrodesulfurization of 4, 6-dimethyldibenzothiophene over Al2O3-and MCM-41-supported Co-Mo sulfide catalysts, Catalysis Today, 86(1-4), 265-275, doi.org/10.1016/S0920-5861(03)00464-4. ##
[4]. Ismagilov, Z., Yashnik, S., Kerzhentsev, M., Parmon, V., Bourane, A., Al-Shahrani, F. M., & Koseoglu, O. R. (2011). Oxidative desulfurization of hydrocarbon fuels. Catalysis Reviews, 53(3), 199-255. ##
[5]. Akopyan, A. V., Fedorov, R. A., Andreev, B. V., Tarakanova, A. V., Anisimov, A. V., & Karakhanov, E. A. (2018). Oxidative desulfurization of hydrocarbon feedstock, Russian Journal of Applied Chemistry, 91, 529-542. ##
[6]. Chen, T. C., Shen, Y. H., Lee, W. J., Lin, C. C., & Wan, M. W. (2013). An economic analysis of the continuous ultrasound-assisted oxidative desulfurization process applied to oil recovered from waste tires, Journal of cleaner production, 39, 129-136, doi.org/10.1016/j.jclepro.2012.09.001. ##
[7]. Wan, M. W., & Yen, T. F. (2007). Enhance efficiency of tetraoctylammonium fluoride applied to ultrasound-assisted oxidative desulfurization (UAOD) process, Applied Catalysis A: General, 319, 237-245, doi.org/10.1016/j.apcata.2006.12.008. ##
[8]. Mello, P. D. A., Duarte, F. A., Nunes, M. A., Alencar, M. S., Moreira, E. M., Korn, M., & Flores, É. M. (2009). Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock, Ultrasonics sonochemistry, 16(6), 732-736, doi.org/10.1016/j.ultsonch.2009.03.002. ##
[9]. Chen, T. C., Shen, Y. H., Lee, W. J., Lin, C. C., & Wan, M. W. (2010). The study of ultrasound-assisted oxidative desulfurization process applied to the utilization of pyrolysis oil from waste tires, Journal of Cleaner Production, 18(18), 1850-1858, doi.org/10.1016/j.jclepro.2010.07.019. ##
[10]. Song, C., & Ma, X. (2004). Ultra-deep desulfurization of liquid hydrocarbon fuels: Chemistry and process, International Journal of Green Energy, 1(2), 167-191, doi.org/10.1081/GE-120038751. ##
[11]. Babich, I. V., & Moulijn, J. A. (2003). Science and technology of novel processes for deep desulfurization of oil refinery streams: a review, Fuel, 82(6), 607-631, doi.org/10.1016/S0016-2361(02)00324-1. ##
[12]. Seeberger, A., & Jess, A. (2010). Desulfurization of diesel oil by selective oxidation and extraction of sulfurcompounds by ionic liquids—a contribution to a competitive process design. Green Chemistry, 12(4), 602-608, doi.org/10.1039/B918724C. ##
[13]. Mei, H., Mei, B. W., & Yen, T. F. (2003). A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization, Fuel, 82(4), 405-414, doi.org/10.1016/S0016-2361(02)00318-6. ##
[14]. Ali, M. F., Al-Malki, A., El-Ali, B., Martinie, G., & Siddiqui, M. N. (2006). Deep desulphurization of gasoline and diesel fuels using non-hydrogen consuming techniques. Fuel, 85(10-11), 1354-1363, doi.org/10.1016/j.fuel.2005.12.006. ##
[15]. Collins, F. M., Lucy, A. R., & Sharp, C. (1997). Oxidative desulphurisation of oils via hydrogen peroxide and heteropolyanion catalysis. Journal of Molecular Catalysis A: Chemical, 117(1-3), 397-403, doi.org/10.1016/S1381-1169(96)00251-8. ##
[16]. Song, C., & Ma, X. (2003). New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Applied Catalysis B: Environmental, 41(1-2), 207-238, doi.org/10.1016/S0926-3373(02)00212-6. ##
[17]. Dai, Y., Qi, Y., Zhao, D., & Zhang, H. (2008). An oxidative desulfurization method using ultrasound/Fenton's reagent for obtaining low and/or ultra-low sulfur diesel fuel, Fuel Processing Technology, 89(10), 927-932, doi.org/10.1016/j.fuproc.2008.03.009. ##
[18]. Choi, A. E. S., Roces, S., Dugos, N., Futalan, C. M., Lin, S. S., & Wan, M. W. (2014). Optimization of ultrasound-assisted oxidative desulfurization of model sulfur compounds using commercial ferrate (VI). Journal of the Taiwan Institute of Chemical Engineers, 45(6), 2935-2942, doi.org/10.1016/j.jtice.2014.08.003. ##
[19]. Yan-Xiu, L. I. U., Hua, S., & Wen-Chao, Z. H. A. N. G. (2013). Oxidation Desulfurization of Model Sulfur Compound by Potassium Ferrate in the Presence of the Catalyst of Phosphomolybdic Acid, China Petroleum Processing & Petrochemical Technology, 15(1), 61. ##
[20]. Lu, M. C., Biel, L. C. C., Wan, M. W., de Leon, R., & Arco, S. (2014). The oxidative desulfurization of fuels with a transition metal catalyst: a comparative assessment of different mixing techniques, International Journal of Green Energy, 11(8), 833-848, doi.org/10.1080/15435075.2013.830260. ##
[21]. Sachdeva, T. O., & Pant, K. K. (2010). Deep desulfurization of diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst, Fuel Processing Technology, 91(9), 1133-1138, doi.org/10.1016/j.fuproc.2010.03.027. ##
[22]. Tam, P. S., Kittrell, J. R., & Eldridge, J. W. (1990). Desulfurization of fuel oil by oxidation and extraction. 1. Enhancement of extraction oil yield, Industrial & Engineering Chemistry Research, 29(3), 321-324, doi.org/10.1021/ie00099a002. ##
[23]. Matsuzawa, S., Tanaka, J., Sato, S., & Ibusuki, T. (2002). Photocatalytic oxidation of dibenzothiophenes in acetonitrile using TiO2: effect of hydrogen peroxide and ultrasound irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 149(1-3), 183-189, doi.org/10.1016/S1010-6030(02)00004-7. ##
[24]. Zannikos, F., Lois, E., & Stournas, S. (1995). Desulfurization of petroleum fractions by oxidation and solvent extraction, Fuel processing technology, 42(1), 35-45, doi.org/10.1016/0378-3820(94)00104-2. ##
[25]. Te, M., Fairbridge, C., & Ring, Z. (2001). Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems. Applied Catalysis A: General, 219(1-2), 267-280, doi.org/10.1016/S0926-860X (01)00699-8. ##
[26]. Al-Shahrani, F., Xiao, T., Llewellyn, S. A., Barri, S., Jiang, Z., Shi, H., & Green, M. L. (2007). Desulfurization of diesel via the H2O2 oxidation of aromatic sulfides to sulfones using a tungstate catalyst, Applied Catalysis B: Environmental, 73(3-4), 311-316, doi.org/10.1016/j.apcatb.2006.12.016. ##
[27]. Ramírez-Verduzco, L. F., Murrieta-Guevara, F., García-Gutiérrez, J. L., Martín-Castañón, R. S., Martínez-Guerrero, M. D. C., Montiel-Pacheco, M. D. C., & Mata-Díaz, R. (2004). Desulfurization of middle distillates by oxidation and extraction process, Petroleum Science and Technology, 22(1-2), 129-139, doi.org/10.1081/LFT-120028528. ##
[28]. Julião, D., Gomes, A. C., Pillinger, M., Valença, R., Ribeiro, J. C., Gonçalves, I. S., & Balula, S. S. (2018). Desulfurization of liquid fuels by extraction and sulfoxidation using H2O2 and [CpMo (CO) 3R] as catalysts, Applied Catalysis B: Environmental, 230, 177-183, doi.org/10.1016/j.apcatb.2018.02.036. ##
[29]. Chen, L., Ren, J. T., & Yuan, Z. Y. (2022). Increasing the utilization of SiBeta support to anchor dual active sites of transition metal and heteropolyacids for efficient oxidative desulfurization of fuel, Applied Catalysis B: Environmental, 305, 121044, doi.org/10.1016/j.apcatb.2021.121044. ##
[30]. Bryzhin, A. A., Gantman, M. G., Buryak, A. K., & Tarkhanova, I. G. (2019). Brønsted acidic SILP-based catalysts with H3PMo12O40 or H3PW12O40 in the oxidative desulfurization of fuels. Applied Catalysis B: Environmental, 257, 117938, doi.org/10.1016/j.apcatb.2019.117938. ##
[31]. Ghubayra, R., Nuttall, C., Hodgkiss, S., Craven, M., Kozhevnikova, E. F., & Kozhevnikov, I. V. (2019). Oxidative desulfurization of model diesel fuel catalyzed by carbon-supported heteropoly acids, Applied CatalysisB: Environmental, 253, 309-316, doi.org/10.1016/j.apcatb.2019.04.063. ##
[32]. Liu, Q., Zhang, Z., Liu, B., & Xia, H. (2018). Rare earth oxide doping and synthesis of spinel ZnMn2O4/KIT-1 with double gyroidal mesopores for desulfurization nature of hot coal gas. Applied Catalysis B: Environmental, 237, 855-865, doi.org/10.1016/j.apcatb.2018.06.056. ##
[33]. Zhu, Z., Ma, H., Liao, W., Tang, P., Yang, K., Su, T., & Lü, H. (2021). Insight into tri-coordinated aluminum dependent catalytic properties of dealuminated Y zeolites in oxidative desulfurization, Applied Catalysis B: Environmental, 288, 120022, doi.org/10.1016/j.apcatb.2021.120022. ##
[34]. Li, S. W., Wang, W., & Zhao, J. S. (2020). Highly effective oxidative desulfurization with magnetic MOF supported W-MoO3 catalyst under oxygen as oxidant, Applied Catalysis B: Environmental, 277, 119224, doi.org/10.1016/j.apcatb.2020.119224. ##
[35]. Mondol, M. M. H., Bhadra, B. N., & Jhung, S. H. (2021). Molybdenum nitride@ porous carbon, derived from phosphomolybdic acid loaded metal-azolate framework-6: A highly effective catalyst for oxidative desulfurization. Applied Catalysis B: Environmental, 288, 119988, doi.org/10.1016/j.apcatb.2021.119988. ##
[36]. Wang, S., Zhang, X., Chang, X., Zong, M. Y., Fan, C. Z., Guo, D. X., & Bu, X. H. (2021). Rational design of ionic V-MOF with confined Mo species for highly efficient oxidative desulfurization. Applied Catalysis B: Environmental, 298, 120594, doi.org/10.1016/j.apcatb.2021.120594. ##
[37]. Bhadra, B. N., & Jhung, S. H. (2019). Oxidative desulfurization and denitrogenation of fuels using metal-organic framework-based/-derived catalysts, Applied Catalysis B: Environmental, 259, 118021, doi.org/10.1016/j.apcatb.2019.118021. ##
[38]. Zhang, M., Liu, J., Li, H., Wei, Y., Fu, Y., Liao, W., & Li, H. (2020). Tuning the electrophilicity of vanadium-substituted polyoxometalate based ionic liquids for high-efficiency aerobic oxidative desulfurization, Applied Catalysis B: Environmental, 271, 118936, doi.org/10.1016/j.apcatb.2020.118936. ##
[39]. Zhang, M., Liu, J., Li, H., Wei, Y., Fu, Y., Liao, W., & Li, H. (2020). Tuning the electrophilicity of vanadium-substituted polyoxometalate based ionic liquids for high-efficiency aerobic oxidative desulfurization, Applied Catalysis B: Environmental, 271, 118936, doi.org/10.1016/j.apcatb.2020.118936. ##
[40]. Huang, D., Wang, Y. J., Yang, L. M., & Luo, G. S. (2006). Chemical oxidation of dibenzothiophene with a directly combined amphiphilic catalyst for deep desulfurization, Industrial & Engineering Chemistry Research, 45(6), 1880-1885, doi.org/10.1021/ie0513346. ##
[41]. Huang, D., Zhai, Z., Lu, Y. C., Yang, L. M., & Luo, G. S. (2007). Optimization of composition of a directly combined catalyst in dibenzothiophene oxidation for deep desulfurization. Industrial & Engineering Chemistry Research, 46(5), 1447-1451, doi.org/10.1021/ie0611857. ##
[42]. Campos-Martin, J. M., Capel-Sanchez, M. C., & Fierro, J. L. G. (2004). Highly efficient deep desulfurization of fuels by chemical oxidation, Green Chemistry, 6(11), 557-562, doi.org/10.1039/B409882J. ##
[43]. Yu, F., & Wang, R. (2014). Oxidative desulfurization of diesel using organic salt of polyoxometalate as an efficient and recoverable phase-transfer catalyst. Chemistry Letters, 43(6), 834-836, doi.org/10.1246/cl.140132. ##
[44]. Dalaigh C. O, Corr S. A, Ko Y. G and Connon, Angew S. J., 2007; Nanomaterials and Nanochemistry, New Journal of Chemistry, Springer-Verlag, Berlin Heidelberg, 46, 4329–4332. ##
[45]. Polshettiwar, V., & Varma, R. S. (2009). Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number. Organic & biomolecular chemistry, 7(1), 37-40, doi: 10.1039/B817669H. ##
[46]. Zhang, J., Wang, Y., Ji, H., Wei, Y., Wu, N., Zuo, B., & Wang, Q. (2005). Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene, Journal of Catalysis, 229(1), 114-118, doi.org/10.1016/j.jcat.2004.09.029. ##
[47]. Panella, B., Vargas, A., & Baiker, A. (2009). Magnetically separable Pt catalyst for asymmetric hydrogenation, Journal of Catalysis, 261(1), 88-93, doi.org/10.1016/j.jcat.2008.11.002. ##
[48]. Wang, H. B., Zhang, Y. H., Zhang, Y. B., Zhang, F. W., & Niu, J. R. (2012). Design of nanocatalysts supported on magnetic nanocomposites containing silica, ceria and titania Yang, H.-L.; Li, R.; Ma, J.-T., Pd immobilized on thiol-modified magnetic nanoparticles: A complete magnetically recoverable and highly active catalyst for hydrogenation reactions, Solid State Sciences, 14(9), 1256-1262. ##
[49]. Sun, Y., Liu, G., Gu, H., Huang, T., Zhang, Y., & Li, H. (2011). Magnetically recoverable SiO2-coated Fe3O4 nanoparticles: a new platform for asymmetric transfer hydrogenation of aromatic ketones in aqueous medium, Chemical Communications, 47(9), 2583-2585, doi.org/10.1039/C0CC03730C. ##
[50]. Baruwati, B., Guin, D., & Manorama, S. V. (2007). Pd on surface-modified NiFe2O4 nanoparticles: a magnetically recoverable catalyst for Suzuki and Heck reactions, Organic Letters, 9(26), 5377-5380, doi.org/10.1021/ol702064x. ##
[51]. Zhang, F., Jin, J., Zhong, X., Li, S., Niu, J., Li, R., & Ma, J. (2011). Pd immobilized on amine-functionalized magnetite nanoparticles: a novel and highly active catalyst for hydrogenation and Heck reactions, Green Chemistry, 13(5), 1238-1243, doi.org/10.1039/C0GC00854K. ##
[52]. Jung, J. Y., Taher, A., Hossain, S., & Jin, M. J. (2010). Highly active heterogeneous palladium catalyst for the Suzuki reaction of heteroaryl chlorides, Bulletin of the Korean Chemical Society, 31(10), 3010-3012, doi: 10.5012/bkcs.2010.31.10.3010. ##
[53]. Bock, M., Dehn, R., & Kirschning, A. (2008). Total synthesis of thuggacin B, Angewandte Chemie International Edition, 47(47), 9134-9137, doi.org/10.1002/anie.200803271. ##
[54]. Fujita K, Umeki S, Yamazaki M, Ainoya T, Tsuchimoto T and Yasuda H, Fe3O4/SiO2/(CH2)3N+Me3Br3– core–shell nanoparticles: An efficient catalyst for the synthesis of functionalized 5-oxo-hexahydroquinolines, Iranian Journal of Catalysis, 2011, 52, 3137–3140. ##
[55]. E. Dezfoolinezhad, K. Ghodrati and R. Badri, (2018), Polyionene/Br3 Grafted on Magnetic Nanoparticles as an Efficient and Eco-Friendly Catalyst for the Metal Free Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones/Thiones, New Journal of Chemistry. Springer, 40, 4575-4583. ##
[56]. Korani, E., Ghodrati, K., & Asnaashari, M. (2018). Magnetic Core–Shell Nanoparticles Containing I 3− 3- as a Novel Catalyst for the Facile Synthesis of Imidazole, Thiazole and Pyrimidine Derivatives in Solvent-Free Conditions. Silicon, 10, 1433-1441. ##
[57]. Dezfoolinezhad, E., Ghodrati, K., & Badri, R. (2019). Polyionene/Br3 grafted on magnetic nanoparticles as an efficient and Eco-friendly catalyst for the metal free synthesis of 3, 4-Dihydropyrimidin-2 (1H)-Ones/Thiones. Silicon, 11(3), 1593-1609. ##