nvestigating the Heterogeneity of Porosity and Permeability of Darian Formation using Heterogeneity Logs in One of the Central Persian Gulf Fields

Document Type : Research Paper

Authors

School of Geology, College of Science, University of Tehran, Iran

Abstract

Quantitative heterogeneity presentation is very important to compare the amount of heterogeneity in different reservoir characteristics in carbonate reservoirs. The aim of the present study is to quantify the heterogeneity by calculating the heterogeneity log and its application in investigating the heterogeneity of porosity and permeability in the Late Barremian-Early Aptian Darian carbonate Formation in the central part of the Persian Gulf. In order to calculate the heterogeneity logs, the well log data of gamma ray, bulk density, neutron porosity, acoustic and deep resistivity and the statistical methods of Lorenz coefficient and coefficient of variation have been used. Results show that the calculation of the heterogeneity log provides the possibility of quantitative comparison of the heterogeneity between different parts of the reservoir for different purposes. Heterogeneity calculation with both methods is efficient for calculating heterogeneity, but it should be noted that the coefficient of variation for the maximum heterogeneity does not have a specific range like the Lorenz coefficient. Also, increase in porosity is associated with a decrease in the amount of heterogeneity in the heterogeneity logs of deep resistivity, acoustic, neutron porosity and density. Unlike other logs, gamma ray heterogeneity log has little direct relationship with porosity in Darian Formation. Two types of neutron porosity heterogeneity and deep resistivity are the most used in determining the reservoir properties in this formation. Permeability shows a weak relationship with heterogeneity logs. In bioclast wackestone microfacies of carbonated units with high porosity, less heterogeneity is observed. Also, units with higher porosity are thicker and therefore exert stronger mean effects on heterogeneous areas. High variability in porosity and permeability causes higher heterogeneity. This is also the case about lithology and clay minerals. Heterogeneity changes at facies change boundaries. Therefore, heterogeneity log can be used to investigate geological heterogeneity, porosity, permeability and reservoir zoning.

Keywords

Main Subjects


[1]. Fitch, P. J., Lovell, M. A., Davies, S. J., Pritchard, T., & Harvey, P. K. (2015). An integrated and quantitative approach to petrophysical heterogeneity. Marine and Petroleum Geology, 63, 82-96.‏ DOI: 10.1016/j.marpetgeo.2015.02.014. ##
[2]. Nurmi, R., Charara, M., Waterhouse, M., & Park, R. (1990). Heterogeneities in carbonate reservoirs: detection and analysis using borehole electrical imagery. Geological Society, London, Special Publications, 48(1), 95-111.‏ DOI: 10.1144/GSL.SP.1990.048.01.09. ##
[3]. Tavakoli, V. (2019). Carbonate reservoir heterogeneity: overcoming the challenges, Springer Nature.‏ ##
[4]. Akbar, M., Vissapragada, B., Alghamdi, A. H., Allen, D., Herron, M., Carnegie, A., & Saxena, K. (2000). A snapshot of carbonate reservoir evaluation, Oilfield review, 12(4), 20-21.‏ ##
[5]. Cerepi, A., Barde, J. P., & Labat, N. (2003). High-resolution characterization and integrated study of a reservoir formation: the danian carbonate platform in the Aquitaine Basin (France). Marine and Petroleum Geology, 20(10), 1161-1183.‏ DOI: 0.1016/j.marpetgeo.2003.09.005. ##
[6]. Elkateb, T., Chalaturnyk, R., & Robertson, P. K. (2003). An overview of soil heterogeneity: quantification and implications on geotechnical field problems. Canadian Geotechnical Journal, 40(1), 1-15.‏ DOI: 10.1139/t02-090. ##
[7]. Ahr, W. M. (2011). Geology of carbonate reservoirs: the identification, description and characterization of hydrocarbon reservoirs in carbonate rocks. John Wiley & Sons.‏ ##
[8]. Fitch, P. J. R. (2011). Heterogeneity in the petrophysical properties of carbonate reservoirs (Doctoral dissertation, University of Leicester).‏ ##
[9]. Weber, K. J. (1986). How heterogeneity affects oil recovery. Reservoir characterization, 487-544.‏ ##
[10]. Zhengquan, W., Qingeheng, W., Yandong, Z. (1997). Quantification of spatial heterogeneity in Old Growth Forests of Korean Pine. Journal of Forestry Research. 8. 65-69. DOI: 10.1007/BF02864969. ##
[11]. Li, H., & Reynolds, J. F. (1995). On definition and quantification of heterogeneity. Oikos, 280-284, doi: 10.2307/3545921. ##
[12]. Amaefule, J. O., Altunbay, M., Tiab, D., Kersey, D. G., & Keelan, D. K. (1993). Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells, In SPE Annual Technical Conference and Exhibition, OnePetro, doi: 10.2118/26436-MS. ##
[13]. Kolodzie, S. (1980). Analysis of pore throat size and use of the Waxman-Smits equation to determine OOIP in Spindle Field, Colorado, In SPE Annual Technical Conference and Exhibition, OnePetro, doi: 10.2118/9382-MS. ##
[14]. Lucia, F. J. (1995). Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization, AAPG bulletin, 79(9), 1275-1300, doi: 10.1306/7834D4A4-1721-11D7-8645000102C1865D. ##
[15]. Lucia, F. J., & Conti, R. D. (1987). Rock fabric, permeability, and log relationships in an upward-shoaling, vuggy carbonate sequence.‏ ##
[16]. Pranter, M. J., Hirstius, C. B., & Budd, D. A. (2005). Scales of lateral petrophysical heterogeneity in dolomite lithofacies as determined from outcrop analogs: Implications for 3-D reservoir modeling, AAPG bulletin, 89(5), 645-662, doi: 10.1306/11300404049. ##
[17]. Westphal, H., Eberli, G. P., Smith, L. B., Grammer, G. M., & Kislak, J. (2004). Reservoir characterization of the Mississippian Madison formation, Wind river basin, Wyoming. AAPG bulletin, 88(4), 405-432, doi:
10.1306/12020301029. ##
[18]. Jennings, J. W., & Lucia, F. J. (2003). Predicting permeability from well logs in carbonates with a link to geology for interwell permeability mapping. SPE Reservoir Evaluation & Engineering, 6(04), 215-225, doi: 10.2118/84942-PA. ##
[19]. Frykman, P., & Duetsch, C. V. (2002). Practical application of geostatistical scaling laws for data integration, Petrophysics-Houston-, 43(3), 153-171.‏ ##
[20]. Sokal, R. R., & Rohlf, F. J. (2012). Biometry, fourth ed. W. H, Freeman and Company, New York. ##
[21]. Aali, J., Rahimpour-Bonab, H., & Kamali, M. R. (2006). Geochemistry and origin of the world's largest gas field from Persian Gulf, Iran, Journal of Petroleum Science and Engineering, 50(3-4), 161-175, doi: 10.1016/j.petrol.2005.12.004. ##
[22]. Nairn, A. E. M., & Alsharhan, A. S. (1997). Sedimentary basins and petroleum geology of the Middle East, Elsevier.‏ ##
[23]. Sharland, P. R., Archer, R., Casey, D. M., Davies, R. B., Hall, S. H., Heward, A. P., & Simmons, M. D. (2001). Arabian plate sequence stratigraphy, GeoArabia Spec. Publ, Bahrain: Gulf Petrolink, 2, 374.‏ ##
[24]. Naderi-Khujin, M., Seyrafian, A., Vaziri-Moghaddam, H., & Tavakoli, V. (2016). A record of global change: OAE 1a in Dariyan shallow-water platform carbonates, southern Tethys, Persian Gulf, Iran, Facies, 62, 1-19.‏ doi: 10.1007/s10347-016-0476-6. ##
[25]. Schroeder, R., van Buchem, F. S., Cherchi, A., Baghbani, D., Vincent, B., Immenhauser, A., & Granier, B. (2010). Revised orbitolinid biostratigraphic zonation for the Barremian–Aptian of the eastern Arabian Plate and implications for regional stratigraphic correlations, ISBN Electronic, 9781733475754.‏ ##
[26]. Naderi-Khujin, M., Tavakoli, V., Seyrafian, A., & Vaziri-Moghaddam, H. (2020). How a mud-dominated ramp changed to a carbonate–clastic oil reservoir: Sea-level fluctuations in cretaceous of the central Persian Gulf. Marine and Petroleum Geology, 116, 104301, doi: 10.1016/j.marpetgeo.2020.104301. ##
[27]. Dickson, J. A. D. (1965). A modified staining technique for carbonates in thin section. Nature, 205(4971), 587-587, doi: 10.1038/205587a0. ##
[28]. Dunham, R. J. (1962). Classification of carbonate rocks according to depositional textures.‏ ##
[29]. Embry, A. F., & Klovan, J. E. (1971). A late Devonian reef tract on northeastern Banks Island, NWT, Bulletin of Canadian petroleum geology, 19(4), 730-781, doi: 10.35767/gscpgbull.19.4.730. ##
[30]. Vincent, B., van Buchem, F. S., Bulot, L. G., Jalali, M., Swennen, R., Hosseini, A. S., & Baghbani, D. (2015). Depositional sequences, diagenesis and structural control of the Albian to Turonian carbonate platform systems in coastal Fars (SW Iran). Marine and Petroleum Geology, 63, 46-67, doi: 10.1016/j.marpetgeo.2015.02.018. ##
[31]. van Buchem, F. S., Al-Husseini, M. I., Maurer, F., Droste, H. J., & Yose, L. A. (2010). Sequence-stratigraphic synthesis of the Barremian–Aptian of the eastern Arabian Plate and implications for the petroleum habitat.‏ ##
[32]. Rameil, N., Immenhauser, A., Warrlich, G., Hillgaertner, H., & Droste, H. J. (2010). Morphological patterns of Aptian Lithocodium–Bacinella geobodies: relation to environment and scale, Sedimentology, 57(3), 883-911.‏ DOI: 10.1111/j.1365-3091.2009.01124.x. ##
[33]. Haghighi, A. S., & Sahraeyan, M. (2014). Facies analysis and diagenetic features of the Aptian Dariyan Formation in Zagros Fold–Thrust Belt, SW Iran, Journal of African Earth Sciences, 100, 598-613, doi: 10.1016/j.jafrearsci.2014.08.009. ##
[34]. Tucker, M., & Wright, V. (1990). Carbonate Sedimentology. ed. Blackwell Science Ltd, Oxford. ##
[35]. Hollis, C. (2011). Diagenetic controls on reservoir properties of carbonate successions within the Albian–Turonian of the Arabian Plate. Petroleum Geoscience, 17(3), 223-241, doi: 10.1144/1354-079310-032. ##
[36]. Fitch, P. J. (2011). Heterogeneity in the petrophysical properties of carbonate reservoirs, Doctoral dissertation, University of Leicester, 1-265. ##
[37]. Kadkhodaie, R. (2021). Study of rock types and diagenetic facies based on velocity deviation log for unraveling the reservoir heterogeneity in a mixed siliciclastic-carbonate reservoir, Southwest of Iran, Journal of Petroleum Science and Technology, 11(2), 43-52, doi: 10.22078/JPST.2021.4621.1760. ##
[38]. شجاعی‌پور م‌ع، رشیدی ف، دبیر ب، امیرسرداری م (1400) بررسی سناریوهای تزریق فوم برای کنترل نسبت گاز به نفت در مخازن کربناته با ناهمگنی تراوایی: شبیه‌سازی فرآیند در یک بخش از مخزن نفتی. پژوهش نفت، 3-14، 31 (1400-4)، doi: 10.22078/PR.2021.4425.3001.
[39]. حسین‌زاده ب، آیت‌اللهی ش، رستمی ب، بازارگان م (1397) مدل‎سازی اثر منحرف‌کننده‌ها در اسیدکاری مخازن ناهمگن کربناته در سیستم شعاعی. پژوهش نفت، 1-4، 28 (97-5)، doi: 10.22078/PR.2018.3148.2462.. ##
[40]. حسین‌زاده م، و توکلی و (1401) تأثیر پارامترهای زمین‌شناسی بر نسبت تراوایی‌ افقی به عمودی در مخازن کربناته سازندهای کنگان و دالان بالایی. پژوهش نفت، 32 (1401-2)، doi: 10.22078/pr.2022.4465.3020. ##
[41]. Tavakoli, V., & Jamalian, A. (2018). Microporosity evolution in Iranian reservoirs, Dalan and Dariyan formations, the central Persian Gulf, Journal of Natural Gas Science and Engineering, 52, 155-165.‏ DOI: 10.1016/j.jngse.2018.01.028. ##
[42]. Ellis, D. V., & Singer, J. M. (2007). Well logging for earth scientists, 692, Dordrecht: Springer.‏ ##
[43]. Kupecz, J. A., Gluyas, J., & Bloch, S. (1997). Reservoir quality prediction in sandstones and carbonates: An overview.‏ ##
[44]. Hosseini, M., Tavakoli, V., & Nazemi, M. (2018). The effect of heterogeneity on NMR derived capillary pressure curves, case study of Dariyan tight carbonate reservoir in the central Persian Gulf. Journal of Petroleum Science and Engineering, 171, 1113-1122. doi: 10.1016/j.petrol.2018.08.054‏.##
[45]. Tavakoli, V., Hassani, D., Rahimpour-Bonab, H., & Mondak, A. (2022). How petrophysical heterogeneity controls the saturation calculations in carbonates, the Barremian–Aptian of the central Persian Gulf, Journal of Petroleum Science and Engineering, 208, 109568, doi: 10.1016/j.petrol.2021.109568.