Investigating the Effect of Functionalized Carbon Nanoparticles on the Stability of Carbon Dioxide Foam Stabilized with Viscoelastic Surfactant

Document Type : Research Paper

Authors

1 Department of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran

2 Nanotechnology Research Center, Faculty of Research and Development in Downstream Petroleum Industry, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

Abstract

In this study, the combination of two types of anionic and zwitterionic surfactants was used. By performing the phase behavior test, the optimal combination of two surfactants was found in such a way that the maximum amount of microemulsion of oil in water is formed. The obtained composition has caused stable nitrogen and CO2 foam in the Persian Gulf Sea water salinity and in contact with oil. Due to the use of zwitterionic surfactant, the stability of CO2 foam is 20.9% higher than that of nitrogen foam. By examining the half-life of CO2 foam by the foam column test, the half-life of foam at the optimal concentration was observed to be 145 minutes. The effect of functionalized carbon nanoparticles on the amount of microemulsion of oil in water and the stability of CO2 foam has been studied, and carbon nanoparticles with amine-carboxyl-hydroxyl functional group have performed best and foam stability has improved by 75%. Also, in order to ensure the performance of foam in dynamic conditions, CO2 foam injection was done in the micromodel, and with CO2 foam injection, 86.4% of the original oil was recovered. The use of carbon nanoparticles with amine-carboxyl-hydroxyl functional group improved the recovery of primary oil by 13.5% and 99.9% of primary oil was recovered.

Keywords

Main Subjects


[1]. Robelius, F. (2007). Giant oil fields-the highway to oil: GIant oil fields and their importance for future oil production (Doctoral dissertation, Acta Universitatis Upsaliensis).##
[2]. Adopted, I. P. C. C. (2014). Climate change 2014 synthesis report, IPCC: Geneva, Szwitzerland, 1059-1072. ##
[3]. Melzer, L. S. (2012). Carbon dioxide enhanced oil recovery (CO2 EOR): Factors involved in adding carbon capture, utilization and storage (CCUS) to enhanced oil recovery, Center for Climate and Energy Solutions, 1-17. ##
[4]. Abedini, A., & Torabi, F. (2014). On the CO2 storage potential of cyclic CO2 injection process for enhanced oil recovery, Fuel, 124, 14-27. ##
[5]. Roefs, P., Moretti, M., Welkenhuysen, K., Piessens, K., & Compernolle, T. (2019). CO2-enhanced oil recovery and CO2 capture and storage: An environmental economic trade-off analysis, Journal of environmental management, 239, 167-177, doi.org/10.1016/j.jenvman.2019.03.007. ##
[6]. Lindeberg, E., Grimstad, A. A., Bergmo, P., Wessel-Berg, D., Torsæter, M., & Holt, T. (2017). Large scale tertiary CO2 EOR in mature water flooded Norwegian oil fields, Energy Procedia, 114, 7096-7106, doi.org/10.1016/j.egypro.2017.03.1851. ##
[7]. Ramanathan, R., Shehata, A. M., & Nasr-El-Din, H. A. (2015, October). Water Alternating CO2 Injection Process-Does Modifying the Salinity of Injected Brine Improve Oil Recovery?, In Offshore Technology Conference Brasil, D031S030R003, OTC, doi.org/10.4043/26253-MS. ##
[8]. Ghedan, S. (2009, October). Global laboratory experience of CO2-EOR flooding. In SPE/EAGE reservoir characterization & simulation conference, cp-170, European Association of Geoscientists & Engineers, doi.org/10.3997/2214-4609-pdb.170.spe125581. ##
[9]. Worthen, A., Taghavy, A., Aroonsri, A., Kim, I., Johnston, K., Huh, C., & DiCarlo, D. (2015). Multi-scale Evaluation of Nanoparticle-stabilized CO2-in-water Foams: From the Benchtop to the Field, In SPE Annual Technical Conference and Exhibition?, D011S009R006, SPE, doi.org/10.2118/175065-MS. ##
[10]. Lake LW, Venuto PB. A niche for enhanced oil recovery in the 1990s, Oil & Gas Journal. 1990;88:62-7. ##
[11]. Koval, E. (1963). A method for predicting the performance of unstable miscible displacement in heterogeneous media, Society of Petroleum Engineers Journal, 3(02), 145-154, doi.org/10.2118/450-PA. ##
[12]. Lee, H. O., & Heller, J. P. (1990). Laboratory measurements of CO2-foam mobility. SPE Reservoir Engineering, 5(02), 193-197, doi.org/10.2118/17363-PA. ##
[13]. AlQuraishi, A. A., Amao, A. M., Al-Zahrani, N. I., AlQarni, M. T., & AlShamrani, S. A. (2019). Low salinity water and CO2 miscible flooding in Berea and Bentheimer sandstones, Journal of king saud university-engineering sciences, 31(3), 286-295, doi.org/10.1016/j.jksues.2017.04.001. ##
[14]. Massarweh, O., & Abushaikha, A. S. (2022). A review of recent developments in CO2 mobility control in enhanced oil recovery, Petroleum, 8(3), 291-317, doi.org/10.1016/j.petlm.2021.05.002. ##
[15]. Nik Salwani, M. A., Rosli, N. R., Tengku Mohd, T. A., Tan, H. L., & Bakar, N. F. A. (2019). Diffusion coefficient and interfacial tension with addition of silica nanoparticles in CO2-surfactant-water-hexane for enhanced oil recovery (EOR) using molecular dynamic simulation, Key Engineering Materials, 797, 375-384, doi.org/10.4028/www.scientific.net/KEM.797.375. ##
[16]. Ren, G., Nguyen, Q. P., & Lau, H. C. (2018). Laboratory investigation of oil recovery by CO2 foam in a fractured carbonate reservoir using CO2-Soluble surfactants, Journal of Petroleum Science and Engineering, 169, 277-296, doi.org/10.1016/j.petrol.2018.04.053. ##
[17]. Binks, B. P., Campbell, S., Mashinchi, S., & Piatko, M. P. (2015). Dispersion behavior and aqueous foams in mixtures of a vesicle-forming surfactant and edible nanoparticles, Langmuir, 31(10), 2967-2978, doi.org/10.1021/la504761x. ##
[18]. Yan, W., Miller, C. A., & Hirasaki, G. J. (2006). Foam sweep in fractures for enhanced oil recovery, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 282, 348-359, doi.org/10.1016/j.colsurfa.2006.02.067. ##
[19] Sun, L., Li, D., Zhao, F., Zhang, X., Wang, D., & Tang, X. (2019). Experimental study of foam flooding in low permeability sandstones: effects of rock permeability and microscopic heterogeneity, Journal of Petroleum Science and Technology, 9(1), 73, doi:10.22078/jpst.2018.3142.1504. ##
[20]. Sæle, A. M., Graue, A., & Alcorn, Z. P. (2022). Unsteady-state CO2 foam injection for increasing enhanced oil recovery and carbon storage potential, doi: 10.46690/ager.2022.06.04. ##
[21]. Chen, Y., Elhag, A. S., Poon, B. M., Cui, L., Ma, K., Liao, S. Y., & Johnston, K. P. (2014). Switchable nonionic to cationic ethoxylated amine surfactants for CO2 enhanced oil recovery in high-temperature, High-salinity Carbonate Reservoirs, SPE journal, 19(02), 249-259. ##
[22]. Elhag, A. S., Chen, Y., Reddy, P. P., Noguera, J. A., Ou, A. M., Hirasaki, G. J., & Johnston, K. P. (2014). Switchable diamine surfactants for CO2 mobility control in enhanced oil recovery and sequestration, Energy Procedia, 63, 7709-7716, doi.org/10.1016/j.egypro.2014.11.804. ##
[23]. Jian, G., Puerto, M. C., Wehowsky, A., Dong, P., Johnston, K. P., Hirasaki, G. J., & Biswal, S. L. (2016). Static adsorption of an ethoxylated nonionic surfactant on carbonate minerals, Langmuir, 32(40), 10244-10252, doi.org/10.1021/acs.langmuir.6b01975. ##
[24]. Zeng, Y., Farajzadeh, R., Eftekhari, A. A., Vincent-Bonnieu, S., Muthuswamy, A., Rossen, W. R., & Biswal, S. L. (2016). Role of gas type on foam transport in porous media, Langmuir, 32(25), 6239-6245, doi.org/10.1021/acs.langmuir.6b00949. ##
[25]. Haugen, A., Fernø, M. A., Graue, A., & Bertin, H. J. (2012). Experimental study of foam flow in fractured oil-wet limestone for enhanced oil recovery, SPE Reservoir Evaluation & Engineering, 15(02), 218-228, doi.org/10.2118/129763-PA. ##
[26]. Farajzadeh, R., Lotfollahi, M., Eftekhari, A. A., Rossen, W. R., & Hirasaki, G. J. H. (2015). Effect of permeability on implicit-texture foam model parameters and the limiting capillary pressure, Energy & fuels, 29(5), 3011-3018, doi.org/10.1021/acs.energyfuels.5b00248. ##
[27]. Abe, M., Schechter, D., Schechter, R. S., Wade, W. H., Weerasooriya, U., & Yiv, S. (1986). Microemulsion formation with branched tail polyoxyethylene sulfonate surfactants, Journal of Colloid and Interface Science, 114(2), 342-356, doi.org/10.1016/0021-9797(86)90420-0. ##
[28]. Barnes, J. R., Dirkzwager, H., Smit, J. R., Smit, J. P., On, A., Navarrete, R. C., & Buijse, M. A. (2010). Application of internal olefin sulfonates and other surfactants to EOR. Part 1: Structure-Performance relationships for selection at different reservoir conditions, In SPE Improved Oil Recovery Symposium, OnePetro, doi.org/10.2118/129766-MS. ##
[29]. Levitt, D. B., Jackson, A. C., Heinson, C., Britton, L. N., Malik, T., Dwarakanath, V., & Pope, G. A. (2009). Identification and evaluation of high-performance EOR surfactants, SPE Reservoir Evaluation & Engineering, 12(02), 243-253, doi.org/10.2118/100089-PA. ##
[30]. Rosen, M. J., & Kunjappu, J. T. (2012). Surfactants and interfacial phenomena, John Wiley & Sons. ##
[31]. Li, R. F., Hirasaki, G. J., Miller, C. A., & Masalmeh, S. K. (2012). Wettability alteration and foam mobility control in a layered, 2D heterogeneous sandpack, SPE journal, 17(04), 1207-1220, doi.org/10.2118/141462-PA. ##
[32]. Bourrel, M., & Chambu, C. (1983). The rules for achieving high solubilization of brine and oil by amphiphilic molecules, Society of Petroleum Engineers Journal, 23(02), 327-338, doi.org/10.2118/10676-PA. ##
[33]. Lu, J., Liyanage, P. J., Solairaj, S., Adkins, S., Arachchilage, G. P., Kim, D. H., & Pope, G. A. (2014). New surfactant developments for chemical enhanced oil recovery, Journal of Petroleum Science and Engineering, 120, 94-101, doi.org/10.1016/j.petrol.2014.05.021. ##
[34]. Bello, A., Ivanova, A., & Cheremisin, A. (2023). A comprehensive review of the role of CO2 foam EOR inthe reduction of carbon footprint in the petroleum industry, Energies, 16(3), 1167, doi.org/10.3390/en16031167. ##
[35]. Sun, L., Bai, B., Wei, B., Pu, W., Wei, P., Li, D., & Zhang, C. (2019). Recent advances of surfactant-stabilized N2/CO2 foams in enhanced oil recovery. Fuel, 241, 83-93, doi.org/10.1016/j.fuel.2018.12.016. ##
[36]. Guo, H., Zitha, P. L., Faber, R., & Buijse, M. (2012). A novel alkaline/surfactant/foam enhanced oil recovery process, Spe Journal, 17(04), 1186-1195, doi.org/10.2118/145043-PA. ##
[37]. Chevallier, E., Tchamba, O., Chabert, M., Bekri, S., Martin, F., & Gautier, S. (2015). Foams with ultra-low interfacial tensions for an efficient EOR process in fractured reservoirs, In SPE Asia Pacific Enhanced Oil Recovery Conference. OnePetro, doi.org/10.2118/174658-MS. ##
[38]. Nguyen, N., Ren, G., Mateen, K., Cordelier, P. R., Morel, D. C., & Nguyen, Q. P. (2015, August). Low-tension gas (LTG) injection strategy in high salinity and high temperature sandstone reservoirs, In SPE Asia Pacific Enhanced Oil Recovery Conference, D021S010R005, SPE, oi.org/10.2118/174690-MS. ##
[39]. Dong, P., Puerto, M., Jian, G., Ma, K., Mateen, K., Ren, G., ... & Hirasaki, G. (2018). Low-IFT foaming system for enhanced oil recovery in highly heterogeneous/fractured oil-wet carbonate reservoirs. SPE Journal, 23(06), 2243-2259, doi.org/10.2118/184569-PA. ##
[40]. Aroonsri, A., Worthen, A., Hariz, T., Johnston, K., Huh, C., & Bryant, S. (2013, September). Conditions for generating nanoparticle-stabilized CO2 foams in fracture and matrix flow, In SPE Annual Technical Conference and Exhibition?, D021S020R006, Spe, doi.org/10.2118/166319-MS. ##
[41]. Dickson, J. L., Binks, B. P., & Johnston, K. P. (2004). Stabilization of carbon dioxide-in-water emulsions with silica nanoparticles, Langmuir, 20(19), 7976-7983, doi.org/10.1021/la0488102. ##
[42]. Emrani, A. S., & Nasr-El-Din, H. A. (2017). An experimental study of nanoparticle-polymer-stabilized CO2 foam, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 524, 17-27, doi.org/10.1016/j.colsurfa.2017.04.023. ##
[43]. Mo, D., Yu, J., Liu, N., & Lee, R. (2012, October). Study of the effect of different factors on nanoparticle-stablized CO2 foam for mobility control, In SPE Annual Technical Conference and Exhibition, OnePetro, doi.org/10.2118/159282-MS. ##
[44]. Mohd, T. A. T., Shukor, M. A. A., Ghazali, N. A., Alias, N., Yahya, E., Azizi, A., & Ramlee, N. A. (2014). Relationship between foamability and nanoparticle concentration of carbon dioxide (CO2) foam for enhanced oil recovery (EOR), Applied Mechanics and Materials, 548, 67-71, doi.org/10.4028/www.scientific.net/AMM.548-549.67. ##
[45]. Singh, R., & Mohanty, K. K. (2020). Study of nanoparticle-stabilized foams in harsh reservoir conditions. Transport in Porous Media, 131, 135-155. ##
[46]. Yekeen, N., Manan, M. A., Idris, A. K., Padmanabhan, E., Junin, R., Samin, A. M., & Oguamah, I. (2018). A comprehensive review of experimental studies of nanoparticles-stabilized foam for enhanced oil recovery, Journal of Petroleum Science and Engineering, 164, 43-74, doi.org/10.1016/j.petrol.2018.01.035. ##
[47]. Massarweh, O., & Abushaikha, A. S. (2022). A review of recent developments in CO2 mobility control in enhanced oil recovery. Petroleum, 8(3), 291-317, doi.org/10.1016/j.petlm.2021.05.002. ##
[48]. Khajehpour, M., Reza Etminan, S., Goldman, J., Wassmuth, F., & Bryant, S. (2018). Nanoparticles as foam stabilizer for steam-foam process, SPE Journal, 23(06), 2232-2242, doi.org/10.2118/179826-PA. ##
[49]. Li, S., Li, Z., & Wang, P. (2016). Experimental study of the stabilization of CO2 foam by sodium dodecyl sulfate and hydrophobic nanoparticles, Industrial & Engineering Chemistry Research, 55(5), 1243-1253, doi.org/10.1021/acs.iecr.5b04443. ##
[50]. Yu, J., An, C., Mo, D., Liu, N., & Lee, R. (2012). Study of adsorption and transportation behavior of nanoparticles in three different porous media. In SPE Improved Oil Recovery Conference?, SPE-153337, doi.org/10.2118/153337-MS. ##
[51]. Sakthivel, S., Adebayo, A., & Kanj, M. Y. (2019). Experimental evaluation of carbon dots stabilized foam for enhanced oil recovery, Energy & Fuels, 33(10), 9629-9643, doi.org/10.1021/acs.energyfuels.9b02235. ##
[52]. Arab, D., Kantzas, A., & Bryant, S. L. (2018). Nanoparticle stabilized oil in water emulsions: A critical review, Journal of Petroleum Science and Engineering, 163, 217-242, doi.org/10.1016/j.petrol.2017.12.091. ##
[53]. Isah, A., Arif, M., Hassan, A., Mahmoud, M., & Iglauer, S. (2022). Fluid–rock interactions and its implications on EOR: Critical analysis, Experimental Techniques and Knowledge Gaps, Energy Reports, 8, 6355-6395, doi.org/10.1016/j.egyr.2022.04.071. ##
[54]. Zhao, G., Dai, C., Zhang, Y., Chen, A., Yan, Z., & Zhao, M. (2015). Enhanced foam stability by adding comb polymer gel for in-depth profile control in high temperature reservoirs, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 115-124, doi.org/10.1016/j.colsurfa.2015.04.041. ##
[55]. AlSumaiti, A. M., Hashmet, M. R., AlAmeri, W. S., & Anto-Darkwah, E. (2018). Laboratory study of CO2 foam flooding in high temperature, High Salinity Carbonate Reservoirs Using Co-injection Technique, Energy & Fuels, 32(2), 1416-1422, doi.org/10.1021/acs.energyfuels.7b03432. ##
 [56]. Føyen, T., Alcorn, Z. P., Fernø, M. A., Barrabino, A., & Holt, T. (2021). CO2 mobility reduction using foam stabilized by CO2-and water-soluble surfactants. Journal of Petroleum Science and Engineering, 196, 107651, doi.org/10.1016/j.petrol.2020.107651. ##
[57]. Worthen, A. J., Parikh, P. S., Chen, Y., Bryant, S. L., Huh, C., & Johnston, K. P. (2014). Carbon dioxide-in-water foams stabilized with a mixture of nanoparticles and surfactant for CO2 storage and utilization applications, Energy Procedia, 63, 7929-7938, doi.org/10.1016/j.egypro.2014.11.827. ##
[58]. Sheng JJ. (2015). Status of surfactant EOR technology, Petroleum, 1:97-105, doi.org/10.1016/j.petlm.2015.07.003.
[59]. Basheva, E. S., Ganchev, D., Denkov, N. D., Kasuga, K., Satoh, N., & Tsujii, K. (2000). Role of betaine as foam booster in the presence of silicone oil drops, Langmuir, 16(3), 1000-1013, doi.org/10.1021/la990777+. ##
[60]. Jones, S. A., Kahrobaei, S., Van Wageningen, N., & Farajzadeh, R. (2022). CO2 foam behavior in carbonate rock: Effect of surfactant type and concentration, Industrial & Engineering Chemistry Research, 61(32), 11977-11987, doi.org/10.1021/acs.iecr.2c01186. ##
[61]. Majeed, T., Sølling, T. I., & Kamal, M. S. (2020). Foamstability: The interplay between salt-, surfactant-and critical micelle concentration, Journal of Petroleum Science and Engineering, 187, 106871, doi.org/10.1016/j.petrol.2019.106871. ##