Modeling of carbonation reaction kinetics in calcium looping process for CO2 capture based on different models

Document Type : Research Paper

Authors

Faculty of Chemical & Petroleum Engineering, University of Tabriz, Iran.

Abstract

Carbonation reaction in the calcium looping is a chemical process in which carbon dioxide reacts with solid calcium oxide, resulting in the production of calcium carbonate. This reaction holds significant importance as an effective method for reducing the concentration of carbon dioxide present in the atmosphere and rapid controlling of climatic changes.The carbonation reaction at two temperatures of 550 and 650°C was modeled using kinetic models of shrinking core, random pore and fractal-like. Kinetic and diffusion constants, which are two important parameters in the chemical and diffusion in the product layer controlling stages, were calculated based on experimental data. The results showed that paying no attention to the slow diffusion stage at 650°C in shrinking core model leads to increase of difference between the predicted and experimental data until 5% at the end of reaction. The results of random pore model showed that despite considering the slow stage, the fracture appeared in the model caused a 3% difference between the predicted and experimental data at the beginning of the slow stage, reached to about 5% at the end of reaction. The fractal-like model results were completely consistent with the experimental data and only a 1.5% difference was observed at the final minutes of reaction. The fractal-like model was applied to predict the carbonation reaction conversion up to 30 consecutive cycles at 650°C. The results showed that due to the sharp decrease in the free surface of the adsorbent in the early moments, as expected, the conversion percentage decreased by 38%between cycles 1 and 10, and then decreased and reached to 4% for cycles between 20 and 30.

Keywords

Main Subjects


[1]. ایمانی، م.، طهماسب‌پور، م. و سانچز خیمنز، پ. (1402). مقایسه عملکرد جاذب‌های کلسیمی تهیه‌شده از منابع سنگ‌آهک و پوسته تخم‌مرغ در جذب دی‌اکسیدکربن طی فرآیند چرخه کلسیم و بهبود کارایی آن‌ها، پژوهش نفت، 33(1402-2)، 170-146، 10.22078 pr.2023.ا/doi:4921.3199‎.##
[2]. مالکی، ن. و مطهری، ک. (1398) عملکرد جذب دی اکسید کربن در محلول پیزایلیلن دی آمین: اندازه‌گیری آزمایشگاهی و مدل‌سازی با استفاده از تئوری پاسخ سطح، پژوهش نفت، 29(98-1)، 135-145، 10.22078 pr.2018.ا/doi:3420.2566. ##
[3]. اکبری، م. و شریف‌نیا، ش. (1396). ساخت نانوکامپوزیت Fe2O3/ZnO با استفاده از روش سنتز احتراقی محلول در تبدیل فتوکاتالیستی گازهای گلخانه‌ای، پژوهش نفت، 27(4-96)، 105-118، 10.22078 .pr.2017ا/doi: 2454.2137‎.##
[4]. Sattari, F., Tahmasebpour, M., & Mohammadpourfard, M. (2021). Modeling the calcium looping process with an emphasis on the bed hydrodynamics and sorbent characteristics, Amirkabir Journal of Mechanical Engineering, 53(5), 2807-2820, doi: 10.22060/mej.2020.17363.6583. ##
[5]. Yaghoobi-Khankhajeh, S., Alizadeh, R., & Zarghami, R. (2018). Adsorption modeling of CO2 in fluidized bed reactor, Chemical Engineering Research and Design, 129, 111-121, doi.org/10.1016/j.cherd.2017.10.037. ##
[6]. Hanak, D. P., Michalski, S., & Manovic, V. (2020). Supercritical CO2 cycle for coal-fired power plant based on calcium looping combustion, Thermal Science and Engineering Progress, 20, 100723, doi.org/10.1016/j.tsep.2020.100723. ##
[7]. Diego, M. E., Arias, B., Alonso, M., & Abanades, J. C. (2013). The impact of calcium sulfate and inert solids accumulation in post-combustion calcium looping systems. Fuel, 109, 184-190, doi.org/10.1016/j.fuel.2012.11.062. ##
[8]. Romano, M. C. (2012). Modeling the carbonator of a Ca-looping process for CO2 capture from power plant flue gas, Chemical Engineering Science, 69(1), 257-269, doi.org/10.1016/j.ces.2011.10.041. ##
[9]. Chen, S., Qin, C., Yin, J., Zhou, X., Chen, S., & Ran, J. (2021). Understanding sulfation effect on the kinetics of carbonation reaction in calcium looping for CO2 capture. Fuel Processing Technology, 221, 106913, doi.org/10.1016/j.fuproc.2021.106913. ##
[10]. Shimizu, T., Hirama, T., Hosoda, H., Kitano, K., Inagaki, M., & Tejima, K. (1999). A twin fluid-bed reactor for removal of CO2 from combustion processes, Chemical Engineering Research and Design, 77(1), 62-68, doi.org/10.1205/026387699525882. ##
[11]. Sattari, F., Tahmasebpoor, M., Valverde, J. M., Ortiz, C., & Mohammadpourfard, M. (2021). Modelling of a fluidized bed carbonator reactor for post-combustion CO2 capture considering bed hydrodynamics and sorbent characteristics, Chemical Engineering Journal, 406, 126762, doi.org/10.1016/j. cej.2020.126762. ##
[12]. Salaudeen, S. A., Acharya, B., & Dutta, A. (2018). CaO-based CO2 sorbents: A review on screening, enhancement, cyclic stability, regeneration and kinetics modelling, Journal of CO2 Utilization, 23, 179-199, doi.org/10.1016/j.jcou.2017.11.012. ##
[13]. Arias, B., Abanades, J. C., & Grasa, G. S. (2011). An analysis of the effect of carbonation conditions on CaO deactivation curves, Chemical Engineering Journal, 167(1), 255-261, doi.org/10.1016/j.cej.2010.12.052. ##
[14]. Lee, D. K. (2004). An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide. Chemical Engineering Journal, 100(1-3), 71-77, doi.org/10.1016/j.cej.2003.12.003. ##
[15]. Grasa, G. S., Abanades, J. C., Alonso, M., & González, B. (2008). Reactivity of highly cycled particles of CaO in a carbonation/calcination loop, Chemical Engineering Journal, 137(3), 561-567, doi.org/10.1016/j.cej.2007.05.017. ##
[16]. Bhatia, S. K., & Perlmutter, D. D. (1980). A random pore model for fluid‐solid reactions: I. Isothermal, kinetic control, AIChE Journal, 26(3), 379-386, doi.org/10.1002/aic.690260308. ##
[17]. Balsamo, M., & Montagnaro, F. (2022). Fractal-like random pore model applied to CO2 capture by CaO sorbent. Chemical Engineering Science, 254, 117649, doi.org/10.1016/j.ces.2022.117649. ##
[18]. Sedghkerdar, M. H., & Mahinpey, N. (2015). A modified grain model in studying the CO2 capture process with a calcium-based sorbent: A semianalytical approach, Industrial & Engineering Chemistry Research, 54(3), 869-877, doi.org/10.1021/ie503989n. ##
[19]. Salaudeen, S. A., Acharya, B., & Dutta, A. (2018). CaO-based CO2 sorbents: A review on screening, enhancement, cyclic stability, regeneration and kinetics modelling, Journal of CO2 Utilization, 23, 179-199, doi.org/10.1016/j.jcou.2017.11.012. ##
[20]. Arias, B., Cordero, J. M., Alonso, M., & Abanades, J. C. (2012). Sulfation rates of cycled CaO particles in the carbonator of a Ca‐looping cycle for postcombustion CO2 capture, AIChE Journal, 58(7), 2262-2269, doi.org/10.1002/aic.12745. ##
[21]. Cai, J., Wang, S., & Kuang, C. (2017). Modeling of carbonation reaction for CaO-based limestone with CO2 in multitudinous calcination-carbonation cycles. International Journal of Hydrogen Energy, 42(31), 19744-19754, doi.org/10.1016/j.ijhydene.2017.06.173. ##
[22]. Cordero, J. M., & Alonso, M. (2015). Modelling of the kinetics of sulphation of CaO particles under CaL reactor conditions, Fuel, 150, 501-511, doi.org/10.1016/j.fuel.2015.02.075. ##
[23]. Montagnaro, F., Balsamo, M., & Salatino, P. (2016). A single particle model of lime sulphation with a fractal formulation of product layer diffusion, Chemical Engineering Science, 156, 115-120, doi.org/10.1016/j.ces.2016.09.021. ##
[24]. Li, Z. S., Fang, F., Tang, X. Y., & Cai, N. S. (2012). Effect of temperature on the carbonation reaction of CaO with CO2, Energy & Fuels, 26(4), 2473-2482, doi.org/10.1021/ef201543n. ##