A Proper Method for Constructing Electrofacies and Three-dimensional Modeling of Diagenetic Processes Effective on Reservoir Quality, Upper Dalan Member and Kangan Formation in the Central Part of the Persian Gulf

Document Type : Research Paper

Authors

School of Geology, College of Science, University of Tehran, Iran

Abstract

One of the key and influential factors that affect reservoir quality is the occurrence of effective diagenetic processes, including dolomitization, anhydritization, and dissolution (moldic and vuggy porosities). This research focuses on studying these processes in the Upper Dalan Member and Kangan carbonate formation located in the Central Persian Gulf. Initially, a comprehensive analysis of petrography was conducted to examine the effects of diagenesis at different depths within core samples from key well. Subsequently, well logs such as NDS, Vp/Vs, RHOB, VDL, and SPI were utilized to create electrofacies related to dolomitization, anhydritization, and dissolution using MRGC method. By applying the geostatistical kriging method to the data of electrofacies from twelve wells, three-dimensional models of dolomitization, anhydritic cementation, and dissolution processes were constructed at a field scale. Based on the sedimentary model of ramp carbonate depositional environment in the Permian-Triassic and the dolomitization model of seepage-reflux, it has been determined that in horizontal sections, the major dolomitized and anhydritic portions are predominantly observed in the southern and middle parts of the field. In the vertical sections, based on the minimum sea-level surfaces (middle K4, lower K3, upper K2, middle K2, and upper K1), the major dolomitized portions are observed in Upper K1, Upper K2, and Lower K3. The major anhydritic portions are found in Upper K1, Middle K2, and Lower K3 to the top of the boundary with K4. Considering that dissolution predominantly occurs in areas exposed to water and that most moldic and vuggy porosities are formed as a result of dissolution, dissolution is more prevalent in the southern to middle parts of horizontal sections. Consequently, there is a higher concentration of moldic and vuggy porosities in these southern to middle parts of horizontal sections. In vertical sections as well, moldic and vuggy porosities align with those seen in upper K1, upper K2, and lower K3.

Keywords

Main Subjects


[1]. Tavakoli, V.‚ & Jamalian ,A. (2019). Porosity evolution in dolomitized Permian–Triassic strata of the Persian Gulf, insights into the porosity origin of dolomite reservoirs, Journal of Petroleum Science and Engineering ‚181‚106191, doi.org/10.1016/j.petrol.2019.106191.##
[2]. Tavakoli, V., Rahimpour-Bonab, H., & Esrafili-Dizaji, B. (2011). Diagenetic controlled reservoir quality of South Pars gas field, an integrated approach, Comptes Rendus Geoscience, 343(1), 55-71, doi.org/10.1016/j.crte.2010.10.004. ##
[3]. رابیلر، فیلیپ. (1398). اصول رخساره‌های الکتریکی، ترجمه رحیمی بهار و پورصیامی، چاپ اول، تهران، انتشارات ستایش، 73-75. ##
[4]. Anselmetti, F. S., & Eberli, G. P. (1999). The velocity-deviation log: a tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density logs, AAPG Bulletin, 83(3), 450-466, doi.org/10.1306/00AA9BCE-1730-11D7-8645000102C1865D. ##
[5]. Ohen, H. A., Ajufo, A. O., & Enwere, P. M. (1996, May). Laboratory NMR relaxation measurements for the acquisition of calibration data for NMR logging tools, In SPE Western Regional Meeting, SPE-35683, doi.org/10.2118/35683-MS. ##
[6]. Paradigm B.V., Electrofacies Analysis Using Facimage in Geolog 8 Paradigm® 17,2017, 6-2. ##
[7]. Perez, H. H., Datta-Gupta, A., & Mishra, S. (2005). The role of electrofacies, lithofacies, and hydraulic flow units in permeability prediction from well logs: a comparative analysis using classification trees, SPE Reservoir Evaluation & Engineering, 8(02), 143-155, doi.org/10.2118/84301-PA. ##
[8]. Serra, O. (1984). Fundamentals microscanner image interpretation, Schlumberger Educational Services, Houston, Texas, 115.
[9]. مدنی، آ.، کمری، م. و رستمیان، ع. (1392). فصل‌های دوم و سوم، مدل‌سازی رخساره‌الکتریکی و پیش‌بینی نگار با استفاده از نرم‌افزار ژئولاگ، چاپ اول، تهران، انتشارات کتاب آوا. ##
[10]. امین‌زاده، ع.، میرجردوی، ا. و نوری طالقانی، م. (1392). فصل‌های سوم، دهم، دوازدهم و سیزدهم، مدل‌سازی استاتیک مخازن نفت و گاز و تفسیر سایزمیک با استفاده از نرم‌افزار Petrel، چاپ اول، تهران، انتشارات آزاده. ##
[11]. Ren, S., Yao, G., & Zhang, Y. (2019). High-resolution geostatistical modeling of an intensively drilled heavy
oil reservoir, the BQ 10 block, Biyang Sag, Nanxiang Basin, China. Marine and Petroleum Geology, 104, 404-422, doi.org/10.1016/j.marpetgeo.2019.03.026. ##
[12]. حسنی پاک، ع. و شرف‌الدین، م. (1380). تحلیل داده‌های اکتشافی، تهران، انتشارات دانشگاه تهران. ##
[13]. Konyuhov, A. I., & Maleki, B. (2006). The Persian Gulf Basin: Geological history, sedimentary formations, and petroleum potential, Lithology and Mineral Resources, 41, 344-361. ##
[14]. Jamalian, A., & Tavakoli, V. (2022). Toward the standardization of heterogeneity evaluation in carbonate reservoirs: a case study of the central Persian Gulf, Arabian Journal of Geosciences, 15(6), 495. ##
[15]. Kashfi, M. S. (1992). Geology of the Permian “Super‐Giant” gas reservoirs in the greater Persian Gulf area, Journal of Petroleum Geology, 15(3), 465-480, doi.org/10.1111/j.1747-5457.1992.tb00720.x. ##
[16]. Alsharhan, A.S., Nairn, A.E.M. (1997). Sedimentary basins and petroleum geology of the Middle East, 20, Elsevier, 1376 AP, Technology & Engineering, 878. ##
[17]. Ehrenberg, S. N., Nadeau, P. H., & Aqrawi, A. A. M. (2007). A comparison of Khuff and Arab reservoir potential throughout the Middle East, AAPG bulletin, 91(3), 275-286, doi.org/10.1306/09140606054. ##
[18]. Esrafili-Dizaji, B., & Rahimpour-Bonab, H. (2009). Effects of depositional and diagenetic characteristics on carbonate reservoir quality: a case study from the South Pars gas field in the Persian Gulf, Petroleum Geoscience, 15(4), 325-344, doi.org/10.1144/1354-079309-817. ##
[19]. Rahimpour‐Bonab, H., Esrafili‐Dizaji, B., & Tavakoli, V. (2010). Dolomitization and anhydrite precipitation in permo‐triassic carbonates at the South Pars gasfield, offshore Iran: controls on reservoir quality, Journal of Petroleum Geology, 33(1), 43-66, doi.org/10.1111/j.1747-5457.2010.00463.x.  ##
[20]. Tavakoli, V. (2015). Chemostratigraphy of the Permian-Triassic strata of the Ofshore Persian Gulf, Iran, In: Ram Kumar, M., (Ed.), Chemostratigraphy: Concepts, Techniques, and Applications Elsevier 373–393, doi.org/10.1016/B978-0-12-419968-2.00014-5. ##
[21]. Nazemi, M., Tavakoli, V., Rahimpour-Bonab, H., Hosseini, M., & Sharifi-Yazdi, M. (2018). The effect of carbonate reservoir heterogeneity on Archie’s exponents (a and m), an example from Kangan and Dalan gas formations in the central Persian Gulf, Journal of Natural Gas Science and Engineering, 59, 297-308, doi.org/10.1016/j.jngse.2018.09.007. ##
[22]. Tavakoli, V., & Jamalian, A. (2018). Microporosity evolution in Iranian reservoirs, Dalan and Dariyan formations, the central Persian Gulf, Journal of Natural Gas Science and Engineering, 52, 155-165, doi.org/10.1016/j.jngse.2018.01.028. ##
[23]. Nazari, M. H., Tavakoli, V., Rahimpour-Bonab, H., & Sharifi-Yazdi, M. (2019). Investigation of factors influencing geological heterogeneity in tight gas carbonates, Permian reservoir of the Persian Gulf, Journal of Petroleum Science and Engineering, 183, 106341, doi.org/10.1016/j.petrol.2019.106341. ##
[24]. Insalaco, E., Virgone, A., Courme, B., Gaillot, J., Kamali, M., Moallemi, A., Lotfpour, M., Monibi, S. (2006). Upper Dalan Member and Kangan Formation between the Zagros Mountains and offshore Fars, Iran: depositional system, biostratigraphy and stratigraphic architecture. GeoArabia, 11, 2. ##
[25]. مدنی، آ.، کمری، م و رستمیان، ع. (1392). فصل‌های دوم و سوم، مدل‌سازی رخساره‌الکتریکی و پیش‌بینی نگار با استفاده از نرم‌افزار ژئولاگ، چاپ اول، تهران، انتشارات کتاب آوا. ##
[26]. Amraei, H., Falahat, R. (2021). Improved ST FZI method for permeability estimation to include the impact of porosity type and lithology, Petroleum Exploration and Production Technology, 11, 109-115. ##
[27]. کدخدایی، ع. (1397). ارزیابی سازندهای نفت‌دار،چاپ اول، تهران، انتشارات دایره دانش، 276. ##
[28]. مقصودی‌اکبری، م.، هاشمیان، خ. و احمدی، ا. (1397). فصل هفتم، مرجع کامل و کاربردی نرم‌افزار GEOLOG، چاپ اول، تهران، انتشارات مثبت. ##
[29]. Al‐Aswad, A. A. (1997). Stratigraphy, sedimentary environment and depositional evolution of the Khuff Formation in south‐central Saudi Arabia, Journal of Petroleum Geology, 20(3), 307-326, doi.org/10.1111/j.1747-5457.1997.tb00638.x. ##
[30]. Alsharhan, A. S., & Kendall, C. S. C. (2003). Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogues, Earth-Science Reviews, 61(3-4), 191-243, doi.org/10.1016/S0012-8252(02)00110-1. ##
[31]. Tavakoli, V. (2017). Application of gamma deviation log (GDL) in sequence stratigraphy of carbonate strata, an example from offshore Persian Gulf, Iran, Journal of Petroleum Science and Engineering, 156, 868-876, doi.org/10.1016/j.petrol.2017.06.069. ##
[32]. خوشبخت، ف. (1392). تعیین سیستم تخلخل سه‌گانه در یک مخزن کربناته با استفاده از لاگ تصویرگر و لاگ‌‌‌های چاه‌پیمایی، پژوهش نفت، 23 (75)، 88-78. ##
[33]. مرادی، م.، موسوی حرمی، ر.، محبوبی، ا. و خانه‌باد، م. (1397). انواع دولومیت‎های سازند آسماری در میدان نفتی آغاجاری و تاثیر آنها بر روند نمودارهای تزریق جیوه، پژوهش نفت، 28 (103)، 67-51. ##
[34]. صرفی، م. و اسعدی، ع. (1396). ویژگی‌های مخزنی توالی‌های دولومیتی سازند عرب، مطالعه موردی در یکی از میادین هیدروکربنی خلیج‌فارس، پژوهش نفت، 27 (97)، 87-73. ##