Investigating the Effects of Pyrolysis Temperature and Cobalt-doped Methods in Organic Aerogel on the Physical and Chemical Properties of Carbon Aerogel

Document Type : Research Paper

Authors

1 Department of Chemical Engineering,, Faculty of Engineering,, Ferdowsi University of Mashhad, Iran

2 Department of Chemistry and Physices, Faculty of Science, Ferdowsi University of Mashhad, Iran

Abstract

In the present study, for the first time, the effect of pyrolysis temperature on the structure of carbon aerogel synthesized at ambient conditions as a support and methods of cobalt-doped carbon aerogel on its physicochemical properties have been investigated. Carbon aerogel was synthesized by resorcinol and formaldehyde precursors at pyrolysis temperatures of 550 °C, 700 °C and 900 °C and cobalt-doped carbon aerogel was prepared by the following three different methods: (i) cobalt impregnation on the carbon aerogel, (ii) cobalt impregnation on the organic resorcinol-formaldehyde aerogel, and (iii) addition of cobalt precursor to the initial resorcinol-formaldehyde mixture before carbon aerogel polymerization process. The results indicated that pyrolysis at 700 °C led to mesoporous carbon aerogel with a specific surface area of 483.8 m2/g. High cobalt dispersion and particle size controllability have been seen in the impregnation method, while in the third method, the cobalt precursor catalyzes the polymerization process and leads to the formation of microparticles.

Keywords

Main Subjects


[1].Pekala, R. W., Alviso, C. T., Kong, F. M., & Hulsey, S. S. (1992). Aerogels derived from multifunctional organic monomers, Journal of Non-Crystalline Solids, 145, 90-98, doi.org/10.1016/S0022-3093(05)80436-3.##
[2]. Guo, F., Jiang, Y., Xu, Z., Xiao, Y., Fang, B., Liu, Y., & Gao, C. (2018). Highly stretchable carbon aerogels, Nature Communications, 9(1), 881. ##
[3]. Gan, G., Li, X., Fan, S., Wang, L., Qin, M., Yin, Z., & Chen, G. (2019). Carbon aerogels for environmental clean‐up, European Journal of Inorganic Chemistry, (27), 3126-3141, doi.org/10.1002/ejic.201801512. ##
[4]. Aegerter, M. A., Leventis, N., & Koebel, M. M. (2011). Advances in sol-gel derived materials and technologies, Aerogels Handbook, Springer, New York, NY, USA. ##
[5]. Moreno-Castilla, C., & Maldonado-Hódar, F. J. (2005). Carbon aerogels for catalysis applications: An overview, Carbon, 43(3), 455-465, doi.org/10.1016/j.carbon.2004.10.022. ##
[6]. Abolhasani, S., Ahmadpour, A., Bastami, T. R., & Yaqubzadeh, A. (2019). Facile synthesis of mesoporous carbon aerogel for the removal of ibuprofen from aqueous solution by central composite experimental design (CCD), Journal of Molecular Liquids, 281, 261-268, doi.org/10.1016/j.molliq.2019.02.084. ##
[7]. Al‐Muhtaseb, S. A., & Ritter, J. A. (2003). Preparation and properties of resorcinol–formaldehyde organic and carbon gels, Advanced Materials, 15(2), 101-114, doi.org/10.1002/adma.200390020. ##
[8]. Yamamoto, T., Nishimura, T., Suzuki, T., & Tamon, H. (2001). Control of mesoporosity of carbon gels prepared by sol–gel polycondensation and freeze drying, Journal of Non-Crystalline Solids, 288(1-3), 46-55, doi. org/10.1016/S0022-3093(01)00619-6. ##
[9]. Lee, J. H., & Park, S. J. (2020). Recent advances in preparations and applications of carbon aerogels: A review, Carbon, 163, 1-18, . ##
[10]. Wang, M. X., Zhang, J., Fan, H. L., Liu, B. X., Yi, X. B., & Wang, J. Q. (2019). ZIF-67 derived Co3O4/carbon aerogel composite for supercapacitor electrodes, New Journal of Chemistry, 43(15), 5666-5669, doi.org/10.1039/C8NJ05958F. ##
[11]. Lu, X., Wang, G., Yang, Y., Kong, X., & Chen, J. (2020). A boron-doped carbon aerogel-supported Cu catalyst for the selective hydrogenation of dimethyl oxalate, New Journal of Chemistry, 44(8), 3232-3240, doi.org/10.1039/C9NJ05956C. ##
[12]. Ma, L., Li, X., Gao, W., Zhang, X., Xu, P., Shu, Y., & Ding, Y. (2020). The immobilizing polysulfide mechanism of cadmium-doping carbon aerogels via a microtemplate for high performance Li–S batteries, New Journal of Chemistry, 44(3), 1001-1008, doi.org/10.1039/C9NJ05405G. ##
[13]. Qu, J., Chen, D., Li, N., Xu, Q., Li, H., He, J., & Lu, J. (2018). Engineering 3D Ru/graphene aerogel using metal–organic frameworks: capture and highly efficient catalytic CO oxidation at room temperature, Small, 14(16), 1800343, doi.org/10.1002/smll.201800343. ##
[14]. Smirnova, A., Dong, X., Hara, H., Vasiliev, A., & Sammes, N. (2005). Novel carbon aerogel-supported catalysts for PEM fuel cell application, International Journal of Hydrogen Energy, 30(2), 149-158, doi.org/10.1016/j.ijhydene.2004.04.014. ##
[15]. Hardjono, Y., Sun, H., Tian, H., Buckley, C. E., & Wang, S. (2011). Synthesis of Co oxide doped carbon aerogel catalyst and catalytic performance in heterogeneous oxidation of phenol in water, Chemical Engineering Journal, 174(1), 376-382, doi.org/10.1016/j.cej.2011.09.009. ##
[16]. Singh, S., Bhatnagar, A., Dixit, V., Shukla, V., Shaz, M. A., Sinha, A. S. K., & Sekkar, V. (2016). Synthesis, characterization and hydrogen storage characteristics of ambient pressure dried carbon aerogel, International Journal of Hydrogen Energy, 41(5), 3561-3570, doi.org/10.1016/j.ijhydene.2015.12.174. ##
[17]. Maldonado-Hódar, F. J. (2011). Metal-doped carbon aerogels as catalysts for the aromatization of n-hexane, Applied Catalysis A: General, 408(1-2), 156-162, doi.org/10.1016/j.apcata.2011.09.021. ##
[18]. Jiang, F., Wang, S., Zheng, J., Liu, B., Xu, Y., & Liu, X. (2021). Fischer-Tropsch synthesis to lower α-olefins over cobalt-based catalysts: Dependence of the promotional effect of promoter on supports. Catalysis Today, 369, 158-166, doi.org/10.1016/j.cattod.2020.03.051. ##
[19]. Moreno-Castilla, C., Maldonado-Hódar, F. J., & Pérez-Cadenas, A. F. (2003). Physicochemical surface properties of Fe, Co, Ni, and Cu-doped monolithic organic aerogels, Langmuir, 19(14), 5650-5655, doi.org/10.1021/la034536k. ##
[20]. Fu, R., Dresselhaus, M. S., Dresselhaus, G., Zheng, B., Liu, J., Satcher Jr, J., & Baumann, T. F. (2003). The growth of carbon nanostructures on cobalt-doped carbon aerogels, Journal of Non-crystalline Solids, 318(3), 223-232, doi.org/10.1016/S0022-3093(02)01903-8. ##
[21]. Fu, R., Dresselhaus, M. S., Dresselhaus, G., Zheng, B., Liu, J., Satcher Jr, J., & Baumann, T. F. (2003). The growth of carbon nanostructures on cobalt-doped carbon aerogels, Journal of Non-crystalline Solids, 318(3), 223-232, doi.org/10.1016/S0022-3093(02)01903-8. ##
[22]. Chen, P. W., Li, K., Yu, Y. X., & Zhang, W. D. (2017). Cobalt-doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution. Applied Surface Science, 392, 608-615, doi.org/10.1016/j.apsusc.2016.09.086. ##
[23]. Mao, Z., Chen, J., Yang, Y., Wang, D., Bie, L., & Fahlman, B. D. (2017). Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution, ACS Applied Materials & interfaces, 9(14), 12427-12435, doi.org/10.1021/acsami.7b00370. ##
[24]. کریمی، ع.، رشیدی، ع. و ناصرنژاد، ب. (2014) بهبود پایداری، فعالیت و گزینش‌پذیری از طریق ایجاد گروه‌های عاملی در نانوکاتالیست کبالت بر پایه نانو لوله کربنی در فرآیند فیشر-تروپش، پژوهش نفت، 23(76)، 15-4. ##
[25]. Torshizi, H. O., Pour, A. N., Mohammadi, A., & Zamani, Y. (2020). Fischer–Tropsch synthesis using a cobalt catalyst supported on graphitic carbon nitride. New Journal of Chemistry, 44(15), 6053-6062, doi.org/10.1039/D0NJ01041C. ##