Presentation a Model of Blockchain Mechanisms for IoT Security in the Oil and Gas Industry of NISOC

Document Type : Research Paper

Authors

1 Department of Information Technology Management, Qazvin Branch Islamic Azad University, Qazvin, Iran

2 Department of Computer, Faculty of Mechanics, Electricity and Computer, Science and Research Branch, Islamic Azad University, Tehran, Iran

3 Department of Technology Management, Faculty of Management and Economics, Science and Research Unit.Islamic Azad University, Tehran, Iran

Abstract

As oil and gas resources play an essential role in energy, oil and gas industry technologies have also developed rapidly in recent years, such as smart drilling technology, smart oil and gas transmission pipelines, and digital offshore platforms. The oil and gas industry has four aspects: business, management and decision-making, monitoring and cyber security. Finally, the state of application programs, the level of understanding of block chain in the security of the Internet of Things in the oil and gas industry, opportunities, challenges and risks and the development process are examined. Therefore, the main goal of the research is to provide a model of block chain mechanisms for the security of the Internet of Things in the Iranian National Oil Company. The nature of the current research is exploratory and qualitative data is used in it. The statistical population of the research is the experts and professors of doctorate in management and information technology in the oil and gas industry (NISOC). In this context, the researcher used the snowball method to achieve theoretical saturation, and the researcher achieved theoretical saturation after structured interviews with 10 elites and experts. Data analysis was done with the qualitative method of Foundation Data Theory and Maxqda2020 software. The findings indicate that the causal factors affecting the block-chain mechanisms for the cyber security of the Internet of Things in the oil and gas industry in the form of three concepts, including data aggregation and storage (network), validation and identity management and key management and data encryption were identified. Also, influential background factors include nine concepts of financial resources, management, distribution of infrastructure services, data confidentiality, system stability, scalability, accessibility, transparency, expertise. and intervening (environmental) factors include seven concepts of environment. Operational standards, standards and procedures are the nature of data for mechanisms in various industries, social environment, cultural environment, government laws and regulations, political relations and the strategies of block chain mechanisms for the cyber security of the Internet of Things, in the form of six concepts of electronic health, creating a secure layer, smart transportation, smart networks, the use of smart block chain contracts, the design of industrial Internet of Things (IIOT) devices, and the consequences And the results of the implementation of block chain. Mechanisms for the cyber security of the Internet of Things in the oil and gas industry of the National Company of the Southern Oil Rich Regions(Nisoc), including the attitude of reducing production costs, high capacity for storage, intelligent field, organizational agility, environmental dynamics, security, System accessibility, improvement of the user interface, the quality of information (distribution and variety of information) and the speed of data processing.

Keywords

Main Subjects


[1]. Fortune Business Insights (2022), The global Internet of Things (IoT) market is projected to grow from $662.21 billion in 2023 to $3,352.97 billion by 2030, at a CAGR of 26.1%, Market Research Report, 1-130.Report ID: FBI100307. ##
[2]. Kietzmann, Jan and Archer-Brown, Chris (2019) From hype to reality: Blockchain grows up. Business Horizons, 3(62), 269-271. ##
[3]. Panetta, K. (2018). 5trends emerge in the Gartner Hype Cycle for emerging technologies, Gartner.Availableathttps://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018. ##
[4]. Morkunas, V. J., Paschen, J., & Boon, E. (2019). How blockchain technologies impact your business model. Business Horizons, 62(3), 295-306, doi.org/10.1016/j.bushor.2019.01.009. ##
[5]. Cole, R., Stevenson, M., & Aitken, J. (2019). Blockchain technology: implications for operations and supply chain management, Supply Chain Management: An International Journal, 24(4), 469-483, doi.org/10.1108/SCM-09-2018-0309. ##
[6]. Kouhizadeh, M., Saberi, S., & Sarkis, J. (2021). Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers, International Journal of Production Economics, 231, 107831, 107831. 10.1016/j.ijpe.2020.107831. ##
[7]. Kshetri, N. (2018). 1 Blockchain’s roles in meeting key supply chain management objectives. International Journal of Information Management, 39, 80-89, doi:10.1016/j.ijinfomgt.2017.12.005. ##
[8]. میرمحمدی، ا. ب. (1399). طراحی الگوی بومی پیاده‌سازی اینترنت اشیا در شرکت‌های آزادراهی. مطالعات مدیریت کسب و کار هوشمند، 8(31)، 28-14، doi.org/10.22054/IMS.2020.43568.1534. ##
[9]. Dorri, A., Kanhere, S. S., & Jurdak, R. (2016). Blockchain in internet of things: challenges and solutions. arXiv preprint arXiv:1608.05187, doi.org/10.48550/arXiv.1608.05187. ##
[10]. Minoli, D., & Occhiogrosso, B. (2018). Blockchain mechanisms for IoT security, Internet of Things, 1-2. 1-13. 10.1016/j.iot.2018.05.002. ##
[11]. Christidis, K., & Devetsikiotis, M. (2016). Blockchains and smart contracts for the internet of things. IEEE access, 4, 2292-2303, doi: 10.1109/ACCESS.2016.2566339. ##
[12]. Durga, R., Poovammal, E., Ramana, K., Jhaveri, R. H., Singh, S., & Yoon, B. (2022). CES blocks—a novel chaotic encryption schemes-based blockchain system for an IoT environment, IEEE Access, 10, 11354-11371, doi: 10.1109/ACCESS.2022.3144681. ##
[13]. Madakam, S., Ramaswamy, R., & Tripathi, S. (2015). Internet of Things (IoT): A literature review, Journal of Computer and Communications, 3(5), 164-173, doi: 10.4236/jcc.2015.35021. ##
[14]. K. Ashton, (2009) That ’internet of things’ thing in the real world, things matter more than ideas, RFID Journal, http://www.rfidjournal.com /article/print/4986 [Accessed on: 2012-07-30]. ##
[15]. Barnor-Ahiaku, E. (2016). Exploring the use of smartphones and tablets by medical House Officers in Korle-Bu Teaching Hospital, Ghana Medical Journal, 50(1), 50-56, eISSN:print ISSN: 0016-9560. ##
[16]. Gupta, Y., Shorey, R., Kulkarni, D., & Tew, J. (2018, January). The applicability of blockchain in the Internet of Things. In 2018 10th International Conference on Communication Systems & Networks (COMSNETS), 561-564, IEEE, doi: 10.1109/COMSNETS.2018.8328273. ##
[17]. فرهمند، ا. ع.، رادفر، ر.، پورابراهیمی، ع. ر.ا.، شریفی، م. (1400). عوامل مؤثر بر پذیرش فن‌آوری‌های اینترنت اشیاء در کسب و کار هوشمند براساس TAM، آینده پژوهی ایران، 6(1)، 171-151، doi: 10.30479/JFS.2021.14154.1227. ##
[18]. جلالی کندسکلائی، ر.، علیرضانژاد، م. و اسمعیلی دوکی، ن. (1400) بررسی نقش فن‌آوری بلاک‌چین در اینترنت اشیاء، چهاردهمین کنفرانس ملی علوم و مهندسی کامپیوتر و فن‌آوری اطلاعات، بابل. ##
[19]. Xuan, S., Zhang, Y., Tang, H., Chung, I., Wang, W., & Yang, W. (2019). Hierarchically authorized transactions for massive internet-of-things data sharing based on multilayer blockchain, Applied Sciences, 9(23), 5159, doi.org/10.3390/app9235159. ##
[20]. Dwivedi, A. D., Srivastava, G., Dhar, S., & Singh, R. (2019). A decentralized privacy-preserving healthcare blockchain for IoT. Sensors, 19(2), 326, doi.org/10.3390/s19020326. ##
[21]. Khan, M. A., & Salah, K. (2018). IoT security: Review, Blockchain Solutions, and Open Challenges, Future generation computer systems, 82, 395-411, doi.org/10.1016/j.future.2017.11.022. ##
[22]. Miraz, M. H., & Ali, M. (2018). Blockchain enabled enhanced IoT ecosystem security, In Emerging Technologies in Computing: First International Conference, iCETiC 2018, London, UK, August 23–24, 2018, Proceedings 1(38-46). Springer International Publishing, doi:10.1007/978-3-319-95450-9_3. ##
[23]. Kouzinopoulos, C.S., Spathoulas, G., Giannoutakis, K.M., Votis, K., Pandey, P., Tzovaras, D., Katsikas, S.K., Collen, A. and Nijdam, N.A. (2018). Using Blockchains to strengthen the security of internet of things, In Security in Computer and Information Sciences: First International ISCIS Security Workshop 2018, Euro-CYBERSEC 2018, London, UK, February 26-27, 2018, Revised Selected Papers 1(90-100), Springer International Publishing. doi.org/10.1007/978-3-319-95189-8. ##
[24]. Wang, Z., Dong, X., Li, Y., Fang, L., & Chen, P. (2018). Iot security model and performance evaluation: A blockchain approach. In 2018 international conference on network infrastructure and digital content (ic-nidc), 260-264, IEEE, doi: 10.1109/ICNIDC.2018.8525716. ##
[25]. Chen, J. (2018). Hybrid blockchain and pseudonymous authentication for secure and trusted IoT networks, ACM SIGBED Review, 15(5), 22-28, doi.org/10.1145/3292384.3292388. ##
[26]. Khan, M. A., & Salah, K. (2018). IoT security: Review, blockchain solutions, and open challenges, Future generation computer systems, 82, 395-411, doi:10.1016/j.future.2017.11.022. ##
[27]. عرب، س. ر.، اشرف‌زاده، ح. و علیدادی، ا. (1397). اینترنت اشیاء: راه حلی جدید در هوشمند‌سازی جهان پیرامون، کنفرانس بین‌المللی کامپیوتر و فن‌آوری اطاعات. ##
[28]. Vermesan, O., & Friess, P. (2014). Internet of things applications-from research and innovation to market deployment, 364, Taylor & Francis, doi:10.1201/9781003338628. ##
[29]. Yaping, C., Xuebing, D. and Wei, S. (2014), “Influence of characteristics of the internet of things on consumer purchase intention”, Social Behavior and Personality: An International Journal,(42)2, 321-330, doi: 10.2224/sbp.2014.42.2.321. ##
[30]. Kendzierskyj, S., Jahankhani, H., & Ndumbe, S. I. (2019). Blockchain for strengthening the privacy of healthcare data. International Journal of Strategic Engineering (IJoSE), 2(1), 14-28, doi: 10.4018/IJoSE.2019010102. ##
[31]. Qian, Y., Jiang, Y., Chen, J., Zhang, Y., Song, J., Zhou, M., & Pustišek, M. (2018). Towards decentralized IoT security enhancement: A blockchain approach, Computers & Electrical Engineering, 72, 266-273, doi.org/10.1016/j.compeleceng.2018.08.021. ##
[32]. Nataliia, L., & Elena, F. (2015). Internet of things as a symbolic resource of power. Procedia-Social and Behavioral Sciences, 166, 521-525, doi.org/10.1016/j.sbspro.2014.12.565. ##
[33]. Reisman, R. (2019). Blockchain serverless public/private key infrastructure for ADS-B security, authentication, and privacy, In AIAA Scitech 2019 Forum, 2203, doi.org/10.2514/6.2019-2203. ##
[34]. Li, J., Wu, J., & Chen, L. (2018). Block-secure: Blockchain based scheme for secure P2P cloud storage, Information Sciences, 465, 219-231, doi.org/10.1016/j.ins.2018.06.071. ##
[35]. یزدان‌پناه ح. ر.، حسنی آهنگر م. ر. و عزیزی م. (1396). طرحی امن و کارا برای احراز هویت کاربران در شبکه‌های حسگر بیسیمِ مبتنی بر مفهوم اینترنت اشیاء. دومین کنفرانس ملی ترکیبیات رمزنگاری و محاسبات. ##
[36]. Lee, B. and Lee, J.H., (2017). Blockchain-based secure firmware update for embedded devices in an Internet of Things environment. The Journal of Supercomputing, 73(3),1152-1167. ##
[37]. رضایی، س. و سهرابی، ش. (1398). تأثیر ویژگی‌های اینترنت اشیاء بر تجربه عملکردی و قصد خرید، چهارمین کنفرانس ملی در مدیریت، حسابداری و اقتصاد با تاکید بر بازاریابی منطقه‌ای و جهانی. ##
[38]. Kim, S. (2016). Behavioral learning game for socio-physical IoT connections. EURASIP Journal on Wireless Communications and Networking, 2016, 1-11. ##
[39]. Casado-Vara, R., de la Prieta, F., Prieto, J., & Corchado, J. M. (2018). Blockchain framework for IoT data quality via edge computing, In Proceedings of the 1st Workshop on Blockchain-enabled Networked Sensor Systems, 19-24, doi.org/10.1145/3282278.3282282. ##