[1]. Dzaugis, M. E., Spivack, A. J., & D'Hondt, S. (2015). A quantitative model of water radiolysis and chemical production rates near radionuclide-containing solids. Radiation Physics and Chemistry, 115, 127-134, doi.org/10.1016/j.radphyschem.2015.06.011.##
[2]. Ramshesh, V. (2001). Safety aspect concerning radiolytic gas generation in reactors. Science Progress, 84(1), 69-85, doi.org/10.3184/0036850017832390. ##
[3]. Ramshesh, V., & Venkateswarlu, K. S. (1988). Radiolytic generation of gases in reactors (No. BARC--1438). Bhabha Atomic Research Centre. ##
[4]. Vereshchinskii, I.V. & A.K. Pikaev (1964) Introduction to radiation chemistry, 1st edittion, Israel Program for Scientific Translations, published in Holly Tel Aviv-Yafo University, 1-578. ##
[5]. Elliot, A. J., & Bartels, D. M. (2009). The reaction set, rate constants and g-values for the simulation of the radiolysis of light water over the range 20 deg to 350 deg C based on information available in 2008 (No. AECL--153-127160-450-001). Atomic Energy of Canada Limited. ##
[6]. Elliot, A. J., Ouellette, D. C., & Stuart, C. R. (1996). The temperature dependence of the rate constants and yields for the simulation of the radiolysis of heavy water. ##
[7]. Ershov, B. G., & Gordeev, A. V. (2008). A model for radiolysis of water and aqueous solutions of H2, H2O2 and O2. Radiation Physics and Chemistry, 77(8), 928-935, doi.org/10.1016/j.radphyschem.2007.12.005. ##
[8]. Hochanadel, C. J. (1952). Effects of cobalt γ-radiation on water and aqueous solutions. The Journal of Physical Chemistry, 56(5), 587-594, doi.org/10.1021/j150497a008. ##
[9]. Swiatla-Wojcik, D. (2016). Hybrid method for numerical modelling of LWR coolant chemistry, Radiation Physics and Chemistry, 127, 236-242, doi.org/10.1016/j.radphyschem.2016.07.005. ##
[10]. Swiatla-Wojcik, D. (2022). A numerical simulation of radiation chemistry for controlling the oxidising environment in water-cooled nuclear power reactors, Applied Sciences, 12(3), 947, doi.org/10.3390/app12030947. ##
[11]. Yakabuskie, P. A., Joseph, J. M., Stuart, C. R., & Wren, J. C. (2011). Long-term γ-radiolysis kinetics of NO3− and NO2− solutions, The Journal of Physical Chemistry A, 115(17), 4270-4278, doi.org/10.1021/jp200262c. ##
[12]. Yakabuskie, P. A., Joseph, J. M., & Wren, J. C. (2010). The effect of interfacial mass transfer on steady-state water radiolysis, Radiation Physics and Chemistry, 79(7), 777-785, doi.org/10.1016/j.radphyschem.2010.02.001. ##
[13]. Markad, U. S., Lisouskaya, A., & Bartels, D. M. (2023). Reactions of Nickel Ions in Water Radiolysis up to 300° C, The Journal of Physical Chemistry B, 127(12), 2784-2791, doi.org/10.1021/acs.jpcb.3c00046 . ##
[14]. Shadman, M. M., Ghazanfari, V., Amini, Y., Mansourzadeh, F., & Taheri, A. (2023). Modeling and simulation of the radiolytic deuterium and oxygen generation in heavy water reactors, Nuclear Engineering and Design, 413, 112514, doi.org/10.1016/j.nucengdes.2023.112514. ##
[15]. JohnáElliot, A. (1993). Temperature dependence of g values for H 2 O and D 2 O irradiated with low linear energy transfer radiation. Journal of the Chemical Society, Faraday Transactions, 89(8), 1193-1197, doi.org/10.1039/FT9938901193. ##
[16]. Gear, C. W. (1971). Numerical initial value problems in ordinary differential equations, Prentice-Hall series in automatic computation. ##
[17]. Huang, X., Wang, S., Tai, M., Zhang, L., & Li, Y. (2017). Solution and computer simulation of complex linear reaction kinetics, Chemical Engineering Transactions, 59, 583-588, doi.org/10.3303/CET1759098. ##
[18]. Shampine, L. F., & Gear, C. W. (1979). A user’s view of solving stiff ordinary differential equations, SIAM Review, 21(1), 1-17, doi.org/10.1137/102100. ##
[19]. Manichev, V., Zhuk, D., & Feldman, E. (2019). The basic set of test problems for ODE system solvers. In IOP Conference Series: Materials Science and Engineering, 630(1), 012012, IOP Publishing. ##