The Effect of Salinity and Sand Particles Presence on Asphaltene Instability during Low-salinity Waterflooding

Document Type : Research Paper

Authors

Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran

10.22078/pr.2023.5204.3313

Abstract

Low-salinity or engineered salinity waterflooding is one of the enhanced oil recovery methods, particularly for the carbonate fields in Iran and around the world. Alongside its numerous benefits, evaluating the side effects such as formation damage due to asphaltene instability and deposition is of paramount importance. Until now, research in this area has primarily focused on the investigation of oil-brine interactions, neglecting the influence of the presence of rock as an essential parameter. Therefore, in this paper, to bring the laboratory tests closer to reservoir conditions, the effect of rock presence was examined by creating contact between brine/fluid/sandstone grains and measuring the UV absorption of bulk oil before and after contact with rock and brine. In this regard, a new “indirect” procedure was developed through which the amount of asphaltene deposition in the presence of various brines was determined. Our results indicate that asphaltene deposition follows a non-monotonic trend with salinity, such that it increases at low salinities and decreases at high salinities, and reaches a minimum value at a middle salinity. The results also show that in the presence of two times diluted seawater, more asphaltene deposition occurs compared to other brines. Adding sandstone particles to the oil-brine system increases the amount of asphaltene deposition due to the creation of a new physical surface for asphaltene adsorption due to the influence of electrostatic forces. Detailed examination of the sand particles reveals that the higher the brine salinity, the higher the asphaltene deposition occurs on the particles; with formation brine leading to the highest asphaltene deposition on the particles (over 1.4 micrograms per gram sand). Ultimately, these experimental results contribute to the understanding of the role of sandstone particles on asphaltene instability during low-salinity waterflooding and provide a more accurate way of evaluating asphaltene deposition at more realistic conditions.

Keywords

Main Subjects


[1]. Tavakkoli, M., Grimes, M. R., Liu, X., Garcia, C. K., Correa, S. C., Cox, Q. J., & Vargas, F. M. (2015). Indirect method: a novel technique for experimental determination of asphaltene precipitation. Energy & Fuels, 29(5), 2890-2900, doi: 10.1021/EF502188U.##
[2]. Shojaati, F., Mousavi, S. H., Riazi, M., Torabi, F., & Osat, M. (2017). Investigating the effect of salinity on the behavior of asphaltene precipitation in the presence of emulsified water, Industrial & Engineering Chemistry Research, 56(48): 14362-14368, doi: 10.1021/ACS.IECR.7B03331. ##
[3]. Farhadi, H., Ayatollahi, S., & Fatemi, M. (2021). The effect of brine salinity and oil components on dynamic IFT behavior of oil-brine during low salinity water flooding: Diffusion coefficient, EDL establishment time, and IFT reduction rate, Journal of Petroleum Science and Engineering, 196, 107862, doi: 10.1016/j.petrol.2020.107862. ##
[4]. Lashkarbolooki, M., Ayatollahi, S., & Riazi, M. (2014). Effect of salinity, resin, and asphaltene on the surface properties of acidic crude oil/smart water/rock system, Energy & Fuels, 28(11): 6820-6829, doi: 10.1021/EF5015692. ##
[5]. Lashkarbolooki, M., Ayatollahi, S., & Riazi, M. (2014). The impacts of aqueous ions on interfacial tension and wettability of an asphaltenic–acidic crude oil reservoir during smart water injection, Journal of Chemical & Engineering Data, 59(11): 3624-3634, doi: 10.1021/JE500730E. ##
[6]. Salehpour, M., Sakhaei, Z., Salehinezhad, R., Mahani, H., & Riazi, M. (2021). Contribution of water-in-oil emulsion formation and pressure fluctuations to low salinity waterflooding of asphaltic oils: A pore-scale perspective. Journal of Petroleum Science and Engineering, 203, 108597, doi: 10.1016/j.petrol.2021.108597. ##
[7]. Joonaki, E., Youzband, A. H., Burgass, R., & Tohidi, B. (2017). Effect of water chemistry on asphaltene stabilised water in oil emulsions-A new search for low salinity water injection mechanism. In 79th EAGE Conference and Exhibition , 2017(1): 1-5), European Association of Geoscientists & Engineers, doi: 10.3997/2214-4609.201701297/CITE/REFWORKS. ##
[8]. Shahsavani, B., Riazi, M., & Malayeri, M. R. (2021). Asphaltene instability in the presence of emulsified aqueous phase. Fuel, 305, 121528, doi: 10.1016/j.fuel.2021.121528. ##
[9]. Tan, X., Fenniri, H., & Gray, M. R. (2009). Water enhances the aggregation of model asphaltenes in solution via hydrogen bonding, Energy & Fuels, 23(7): 3687–3693, doi: 10.1021/EF900228S. ##
[10]. Nassar, N. N., Hassan, A., & Pereira-Almao, P. (2011). Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation, Journal of Colloid and Interface Science, 360(1): 233-238, doi: 10.1016/j.jcis.2011.04.056. ##
[11]. Ashoori, S., & Balavi, A. (2014). An investigation of asphaltene precipitation during natural production and the CO2 injection process, Petroleum Science and Technology, 32(11): 1283-1290, doi: 10.1080/10916466.2011.633590. ##
[12]. Hu, C., Sabio, J. C., Yen, A., Joshi, N., & Hartman, R. L. (2015). Role of water on the precipitation and deposition of asphaltenes in packed-bed microreactors, Industrial & Engineering Chemistry Research, 54(16): 4103-4112, doi: 10.1021/IE5038775. ##
[13]. Hu, C., Garcia, N.C., Xu, R., Cao, T., Yen, A., Garner, S.A., Macias, J.M., Joshi, N. and Hartman, R.L., 2016. Interfacial properties of asphaltenes at the heptol–brine interface, Energy & Fuels, 30(1): 80-87, doi: 10.1021/ACS.ENERGYFUELS.5B01855. ##
[14]. Shojaati, F., Mousavi, S. H., Riazi, M., Torabi, F., & Osat, M. (2017). Investigating the effect of salinity on the behavior of asphaltene precipitation in the presence of emulsified water, Industrial & Engineering Chemistry Research, 56(48), 14362-14368, doi: 10.1021/ACS.IECR.7B03331/SUPPL_FILE/IE7B03331_SI_001.PDF. ##
[15]. Azari, V., Abolghasemi, E., Hosseini, A., Ayatollahi, S., & Dehghani, F. (2018). Electrokinetic properties of asphaltene colloidal particles: Determining the electric charge using micro electrophoresis technique, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 541, 68-77, doi: 10.1016/J.COLSURFA.2018.01.029. ##
[16]. Joonaki, E., Buckman, J., Burgass, R., & Tohidi, B. (2019). Water versus asphaltenes; liquid–liquid and solid–liquid molecular interactions unravel the mechanisms behind an improved oil recovery methodology, Scientific reports, 9(1): 11369, doi: 10.1038/s41598-019-47782-5. ##
[17]. Taherian, Z., Dehaghani, A. S., Ayatollahi, S., & Kharrat, R. (2022). The mechanistic investigation on the effect of the crude oil/brine interaction on the interface properties: A study on asphaltene structure, Journal of Molecular Liquids, 360, 119495, doi: 10.1016/j.molliq.2022.119495. ##
[18]. Ghasemian, J., Riahi, S., Ayatollahi, S., & Mokhtari, R. (2019). Effect of salinity and ion type on formation damage due to inorganic scale deposition and introducing optimum salinity, Journal of Petroleum Science and Engineering, 177, 270-281, doi: 10.1016/J.PETROL.2019.02.019. ##
[19]. Ali, M. A., & Islam, M. R. (1998). The effect of asphaltene precipitation on carbonate-rock permeability: an experimental and numerical approach. SPE Production & Facilities, 13(03): 178-183, doi: 10.2118/50963-PA. ##
[20]. Jafari Behbahani, T., Ghotbi, C., Taghikhani, V., & Shahrabadi, A. (2013). Asphaltene deposition under dynamic conditions in porous media: theoretical and experimental investigation. Energy & Fuels, 27(2): 622-639, doi: 10.1021/EF3017255. ##
[21]. Kordestany, A., Hassanzadeh, H., & Abedi, J. (2019). An experimental approach to investigating permeability reduction caused by solvent-induced asphaltene deposition in porous media, The Canadian Journal of Chemical Engineering, 97(1): 361-371, doi: 10.1002/CJCE.23238. ##
[22]. Mansouri, M., Ahmadi, Y., & Jafarbeigi, E. (2022). Introducing a new method of using nanocomposites for preventing asphaltene aggregation during real static and dynamic natural depletion tests. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(3), 7499-7513, doi: 10.1080/15567036.2022.2113937. ##
[23]. Fan, Y., Simon, S., & Sjöblom, J. (2010). Interfacial shear rheology of asphaltenes at oil–water interface and its relation to emulsion stability: Influence of concentration, solvent aromaticity and nonionic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 366(1-3): 120-128, doi: 10.1016/j.colsurfa.2010.05.034. ##
[24]. SPickering, S. U. (1907). Cxcvi.—emulsions. Journal of the Chemical Society, Transactions, 91, 2001-2021, doi: 10.1039/CT9079102001. ##
[25]. Eley, D. D., Hey, M. J., & Symonds, J. D. (1988). Emulsions of water in asphaltene-containing oils 1. Droplet size distribution and emulsification rates. Colloids and surfaces, 32, 87-101, doi: 10.1016/0166-6622(88)80006-4. ##
[26]. Chevalier, Y., & Bolzinger, M. A. (2013). Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439, 23-34, doi: 10.1016/j.colsurfa.2013.02.054. ##
[27]. Wang, Z., Babadagli, T., & Maeda, N. (2021). Generation of pickering emulsions by activating natural asphaltenes as nano materials: An experimental analysis for cost-effective heavy-oil recovery, Journal of Molecular Liquids, 339, 116759, doi: 10.1016/J.MOLLIQ.2021.116759. ##
[28]. Aveyard, R., Binks, B. P., & Clint, J. H. (2003). Emulsions stabilised solely by colloidal particles, Advances in Colloid and Interface Science, 100, 503-546, doi: 10.1016/S0001-8686(02)00069-6. ##
[29]. Binks, B. P., & Lumsdon, S. O. (1999). Stability of oil-in-water emulsions stabilised by silica particles. Physical Chemistry Chemical Physics, 1(12), 3007-3016, doi: 10.1039/a902209k. ##
[30]. Binks, B. P. (2002). Particles as surfactants—similarities and differences. Current opinion in colloid & interface science, 7(1-2): 21-41, doi: 10.1016/S1359-0294(02)00008-0. ##
[31]. Tharanivasan, A. K., Yarranton, H. W., & Taylor, S. D. (2012). Asphaltene precipitation from crude oils in the presence of emulsified water. Energy & Fuels, 26(11), 6869-6875, doi: 10.1021/ef301200v. ##
[32]. Wang, J., Fan, T., Buckley, J. S., & Creek, J. L. (2014, May). Impact of water cut on asphaltene deposition tendency. In Offshore Technology Conference (p. D021S024R001). OTC. doi: 10.4043/25411-MS. ##
[33]. Tavakkoli, M., Grimes, M. R., Liu, X., Garcia, C. K., Correa, S. C., Cox, Q. J., & Vargas, F. M. (2015). Indirect method: a novel technique for experimental determination of asphaltene precipitation. Energy & Fuels, 29(5), 2890-2900, doi: 10.1021/ef502188u. ##
[34]. Tavakkoli, M., Chen, A., Sung, C. A., Kidder, K. M., Lee, J. J., Alhassan, S. M., & Vargas, F. M. (2016). Effect of emulsified water on asphaltene instability in crude oils. Energy & Fuels, 30(5), 3676-3686, doi: 10.1021/ACS.ENERGYFUELS.5B02180. ##
[35]. Rocha, J. A., Baydak, E. N., Yarranton, H. W., Sztukowski, D. M., Ali-Marcano, V., Gong, L., ... & Zeng, H. (2016). Role of aqueous phase chemistry, interfacial film properties, and surface coverage in stabilizing water-in-bitumen emulsions. Energy & Fuels, 30(7): 5240-5252, doi: 10.1021/acs.energyfuels.6b00114. ##
[36]. Demir, A. B., Bilgesu, H. I., & Hascakir, B. (2016, May). The effect of clay and salinity on asphaltene stability, In SPE Western Regional Meeting, SPE-180425, SPE, doi: 10.2118/180425-MS. ##
[37]. Ameri, A., Esmaeilzadeh, F., & Mowla, D. (2018). Effect of low-salinity water on asphaltene precipitation,  Journal of Dispersion Science and Technology, 39(7): 1031-1039, doi: 10.1080/01932691.2017.1381616. ##
[38]. Mokhtari, R., & Ayatollahi, S. (2019). Dissociation of polar oil components in low salinity water and its impact on crude oil–brine interfacial interactions and physical properties, Petroleum Science, 16(2), 328-343, doi: 10.1007/s12182-018-0275-5. ##
[39]. Joonaki, E., Buckman, J., Burgass, R., & Tohidi, B. (2019). Water versus asphaltenes; liquid–liquid and solid–liquid molecular interactions unravel the mechanisms behind an improved oil recovery methodology, Scientific reports, 9(1): 11369, doi: 10.1038/s41598-019-47782-5. ##
[40]. Saraji, S., Goual, L., & Piri, M. (2013). Dynamic adsorption of asphaltenes on quartz and calcite packs in the presence of brine films, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 434, 260-267, doi: 10.1016/j.colsurfa.2013.05.070. ##
[41]. Monjezi, R., Ghotbi, C., Jafari Behbahani, T., & Bakhshi, P. (2019). Experimental investigation of dynamic asphaltene adsorption on calcite packs: The impact of single and mixed-salt brine films, The Canadian Journal of Chemical Engineering, 97(7): 2028-2038, doi: 10.1002/cjce.23441. ##
[42]. Hosseini, A., Zare, E., Ayatollahi, S., Vargas, F. M., Chapman, W. G., Kostarelos, K., & Taghikhani, V. (2016). Electrokinetic behavior of asphaltene particles, Fuel, 178, 234-242, doi: 10.1016/j.fuel.2016.03.051. ##
[43]. Alotaibi, M. B., Nasr-El-Din, H. A., & Fletcher, J. J. (2011). Electrokinetics of limestone and dolomite rock particles, SPE Reservoir Evaluation & Engineering, 14(05), 594-603, doi: 10.2118/148701-PA. ##
[44]. Alotaibi, M. B., Nasralla, R. A., & Nasr-El-Din, H. A. (2011). Wettability studies using low-salinity water in sandstone reservoirs, SPE Reservoir Evaluation & Engineering, 14(06): 713-725, doi: 10.2118/149942-PA. ##
[45]. Mahani, H., Keya, A. L., Berg, S., Bartels, W. B., Nasralla, R., & Rossen, W. R. (2015). Insights into the mechanism of wettability alteration by low-salinity flooding (LSF) in carbonates, Energy & Fuels, 29(3): 1352-1367, doi: 10.1021/EF5023847. ##
[46]. Mahani, H., Berg, S., Ilic, D., Bartels, W. B., & Joekar-Niasar, V. (2015). Kinetics of low-salinity-flooding effect. SPE Journal, 20(01): 8-20, doi: 10.2118/165255-PA. ##
[47]. Al-Shalabi, E. W., & Ghosh, B. (2016). Effect of pore-scale heterogeneity and capillary-viscous fingering on commingled waterflood oil recovery in stratified porous media, Journal of Petroleum Engineering, 2016(1): 1708929, doi: 10.1155/2016/1708929. ##
[48]. Ahmadi, P., Asaadian, H., Khadivi, A., & Kord, S. (2019). A new approach for determination of carbonate rock electrostatic double layer variation towards wettability alteration, Journal of Molecular Liquids, 275, 682-698, doi: 10.1016/j.molliq.2018.11.106. ##
[49]. JKim, J. W., Lee, D., Shum, H. C., & Weitz, D. A. (2008). Colloid surfactants for emulsion stabilization. Advanced materials, 20(17): 3239-3243, doi: 10.1002/adma.200800484. ##
[50]. Hirsemann, D., Shylesh, S., De Souza, R.A., Diar-Bakerly, B., Biersack, B., Mueller, D. N., Martin, M., Schobert, R. and Breu, J. (2012). Large-scale, low-cost fabrication of janus-type emulsifiers by selective decoration of natural kaolinite platelets, Angewandte Chemie International Edition, 6(51): 1348-1352, doi: 10.1002/anie.201106710. ##
[51]. Diar-Bakerly, B., Hirsemann, D., Kalo, H., Schobert, R., & Breu, J. (2014). Modification of kaolinite by grafting of siderophilic ligands to the external octahedral surface, Applied Clay Science, 90, 67-72, doi: 10.1016/j.clay.2013.12.020. ##
[52]. Liang, S., Li, C., Dai, L., Tang, Q., Cai, X., Zhen, B., ... & Wang, L. (2018). Selective modification of kaolinite with vinyltrimethoxysilane for stabilization of Pickering emulsions, Applied Clay Science, 161, 282-289, doi: 10.1016/j.clay.2018.04.038. ##
[53]. Tambe, D. E., & Sharma, M. M. (1994). The effect of colloidal particles on fluid-fluid interfacial properties and emulsion stability, Advances in Colloid and Interface Science, 52, 1-63, doi: 10.1016/0001-8686(94)80039-1. ##
[54]. Kpogbemabou, D., Lecomte-Nana, G., Aimable, A., Bienia, M., Niknam, V., & Carrion, C. (2014). Oil-in-water Pickering emulsions stabilized by phyllosilicates at high solid content, Colloids and Surfaces a: Physicochemical and Engineering Aspects, 463, 85-92, doi: 10.1016/j.colsurfa.2014.09.037. ##
[55]. Cai, X., Li, C., Tang, Q., Zhen, B., Xie, X., Zhu, W., ... & Wang, L. (2019). Assembling kaolinite nanotube at water/oil interface for enhancing Pickering emulsion stability, Applied Clay Science, 172, 115-122, doi: 10.1016/j.clay.2019.02.021.
[56]. IP 143/84, 1989,‘Standard Methods for Analysis and Testing of Petroleum and Related Products’. ##
[57]. Mohammad, T., Andrew, C., Chi-An, S., & Jin, L. J. (2016). Effect of emulsified water on asphaltene instability in crude oils, doi: pubag.nal.usda.gov/catalog/5343245. ##
[58]. Vargas, F.M., Garcia-Bermudes, M., Boggara, M., Punnapala, S., Abutaqiya, M., Mathew, N., Prasad, S., Khaleel, A., Al Rashed, M. and Al Asafen, H., (2014). On the development of an enhanced method to predict asphaltene precipitation. In Offshore Technology Conference (D021S017R001). OTC., doi: 10.4043/25294-MS. ##
[59]. Lashkarbolooki, M., Riazi, M., & Ayatollahi, S. (2016). Investigation of effects of salinity, temperature, pressure, and crude oil type on the dynamic interfacial tensions, Chemical Engineering Research and Design, 115, 53-65, doi: 10.1016/j.cherd.2016.09.020. ##
[60]. Mokhtari, R., Hosseini, A., Fatemi, M., Andersen, S. I., & Ayatollahi, S. (2022). Asphaltene destabilization in the presence of an aqueous phase: The effects of salinity, ion type, and contact time, Journal of Petroleum Science and Engineering, 208, 109757, doi: 10.1016/j.petrol.2021.109757. ##
[61]. Moeini, F., Hemmati-Sarapardeh, A., Ghazanfari, M. H., Masihi, M., & Ayatollahi, S. (2014). Toward mechanistic understanding of heavy crude oil/brine interfacial tension: The roles of salinity, temperature and pressure. Fluid phase equilibria, 375, 191-200, doi: 10.1016/j.fluid.2014.04.017. ##
[62]. Lashkarbolooki, M., & Ayatollahi, S. (2018). The effects of pH, acidity, asphaltene and resin fraction on crude oil/water interfacial tension. Journal of Petroleum Science and Engineering, 162, 341-347, doi: 10.1016/j.petrol.2017.12.061. ##
[63]. Farhadi, H., Fatemi, M., & Ayatollahi, S. (2021). Experimental investigation on the dominating fluid-fluid and rock-fluid interactions during low salinity water flooding in water-wet and oil-wet calcites. Journal of Petroleum Science and Engineering, 204, 108697, doi: 10.1016/j.petrol.2021.108697. ##
[64]. Farhadi, H., Ayatollahi, S., & Fatemi, M. (2021). The effect of brine salinity and oil components on dynamic IFT behavior of oil-brine during low salinity water flooding: Diffusion coefficient, EDL establishment time, and IFT reduction rate, Journal of Petroleum Science and Engineering, 196, 107862, doi: 10.1016/j.petrol.2020.107862. ##
[65]. Lashkarbolooki, M., Riazi, M., Hajibagheri, F., & Ayatollahi, S. (2016). Low salinity injection into asphaltenic-carbonate oil reservoir, mechanistical study. Journal of Molecular Liquids, 216, 377-386, doi: 10.1016/j.molliq.2016.01.051. ##