Phasing Optimization in the Single Helical Perforation Pattern in Hydrocarbon Reservoirs

Document Type : Research Paper

Authors

1 Rock Mechanics Group, Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Semnan, Iran

2 Shahrood University of Technology Department of mining Engineering, Petroleum and Geophysics

3 "Rock Mechanics Group, Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Semnan, Iran

4 Geology Department, National Iranian South Oil Company, Ahvaz, Khuzestan, Iran

10.22078/pr.2024.5360.3387

Abstract

The Cased, Cemented, and Perforated (CCP) completion method is considered one of the superior well completion methods in sand-prone reservoirs due to its execution safety and cost-effectiveness compared to alternative techniques. In the design of perforation configurations, the number of shots aligns with the requisite hydrocarbon production volume. Consequently, the optimization of the phase angle (phasing) emerges as a critical design parameter, typically deployed to forestall overlap within the impacted zones surrounding neighboring perforations and curtail their interaction. In light of the absence of constraints and the ease of establishing a single helical perforation pattern compared to alternatives, this study is dedicated to exploring the optimal phase angles within this pattern using a pythonic brute-force search approach. Emphasis is placed on achieving the minimum spacing between adjacent perforations, and the analysis is geared towards identifying the most optimal phase angles for 6, 9, and 12 shots per foot across three common wellbore diameters. Innovations of this study include the consideration of more than three consecutive wraps of perforations in determining the optimal phasing, as well as the simultaneous impact of perforation stability and uniform flow distribution around the wellbore in reducing the likelihood of sand production. The uniform distribution of perforations has been achieved by introducing a parameter known as the Equilateral Likeness Score (ELS), where its minimum value signifies the most uniform arrangement of adjacent perforations. The optimal phasing angles are determined by drawing inspiration from two distinct perspectives: maximizing the spacing between adjacent perforations and achieving the highest possible phasing values. A comparative analysis of the outcomes derived from the presented theory and existing ones underscores the potential for significant variations in the determined phasing values for certain shot densities. The optimal phase angles for the aforementioned shot densities are projected as 127, 130, and 97 degrees for a 41/8-inch wellbore, 130, 97, and 143 degrees for a 61/8-inch wellbore, and 97, 143, and 77 degrees for an 81/2-inch wellbore.

Keywords

Main Subjects