Investigating the Dependency of Liquid Bridge and Two-Phase Pressure Difference inside Fracture on Fractured Rock Properties in Gravity Drainage

Document Type : Research Paper

Authors

Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran

10.22078/pr.2024.5330.3374

Abstract

In fractured reservoirs under the gravity drainage, the oil transfer between adjacent matrix blocks is one of the main factors in determining the degree of oil recovery. Communication between matrix blocks can occur by forming a liquid bridge between two adjacent matrices. Therefore, in this study, by modeling and simulating in Comsol, we investigated the characteristics of the liquid bridge formed inside the fracture and the dependency of the liquid bridge shape and the pressure difference on the fracture properties such as the fracture aperture, matrix permeability and wettability. Moreover, the initial and boundary conditions in the problem are set such that it can show physically the flow exchange between the matrix and fracture in reservoir conditions. Furthermore, the results of this simulation showed that the liquid bridge throat decreases with the size of the fracture aperture. In addition, this change in the liquid bridge causes the two-phase pressure difference to decrease with the increase of the fracture aperture, and after a critical value (for example, 1.7 mm), it becomes negative. Also, the results showed that as the contact angle increases toward neutral wettability, the more vertically liquid bridge formed and it leads to small changes (40 psi) for two phase pressure difference inside the fracture. In addition, with the increase in rock permeability and more flow entering the fracture, the throat radius of the formed liquid bridge increased from about 0.03 mm to about 0.05 mm, which it is consistent with the published laboratory data. The findings of this research can be used for better understanding how the liquid bridge changes and its effect on the of the two-phase pressure difference, which is a controlling parameter for two phase interface inside fracture.

Keywords

Main Subjects


[1]. Aguilera, R. (1980), Naturally fractured reservoirs. Petroleum Publishing Company Tulsa, Okla.##
[2]. Van Golf-Racht, T.D. (1982), Fundamentals of fractured reservoir engineering. 12. Elsevier.##
[3]. Masihi M, Fractured reservoir engineering- modeling and simulation, RIPI Publication Institute, 258,ISBN: 978-600-5961-98-0, 2016. (Persian).##
[4]. Saidi A. M. (1987). Reservoir Engineering of Fractured Reservoirs: Fundamental and Practical Aspects, 864, Total co.##
[5]. Parvizi, R., & Ghaseminejad, E. (2014). An experimental investigation of gravity drainage during immiscible gas injection in carbonate rocks under reservoir conditions. Journal of Petroleum Science and Technology, 4(1), 63-71. doi: 10.22078/jpst.2014.326.##
[6]. Erfani H., Malekabadi A. K., Ghazanfari M.H. and Rostami B. (2020) Experimental and modelling study of gravity drainage in a three block system. (202). Transport in Porous Media, 7.##
[7]. Erfani, H., Karimi Malekabadi, A., Ghazanfari, M. H., & Rostami, B. (2021). Experimental and modelling study of gravity drainage in a three-block system. Transport in Porous Media, 136, 471-494.##
[8]. Mashayekhizadeh, V., Ghazanfari, M. H., Kharrat, R., & Dejam, M. (2011). Pore-level observation of free gravity drainage of oil in fractured porous media. Transport in Porous Media, 87, 561-584.##
[9]. محمدی ا.، رسایی م. ر.، مشایخی‌زاده و. و نخعی ع. (۱۴۰۱). مدل‌سازی شبکه‌حفره‌ای نفوذ مولکولی توأم با ریزش‌ثقلی در یک مدل تک‌بلوکی، پژوهش نفت ، دوره 32، خرداد و تیر 1401، صفحه 130-112، 
10.22078pr.2022.4719.3116ا:doi.##
[10]. Manafi, M., Kalantariasl, A., & Ghaedi, M. (2022). A COMSOL Multiphysics study on block-to-block interactions in naturally fractured reservoirs. Journal of Petroleum Science and Engineering, 208, 109540. doi.org/10.1016/j.petrol.2021.109540.##
[11]. Labastie, A. (1990, September). Capillary continuity between blocks of a fractured reservoir. In SPE Annual Technical Conference and Exhibition? SPE-20515). SPE.##
[12]. Bina, O., Aminshahidy, B., Dadvar, M., & Moghadasi, J. (2020). Capillary continuity in fractured porous media; part II: Evaluation of fracture capillary pressure in the presence of liquid bridges using a novel microfluidic approach. Journal of Molecular Liquids, 314, 113666. doi.org/10.1016/j.molliq.2020.113666.##
[13]. Dejam, M., & Hassanzadeh, H. (2011). Formation of liquid bridges between porous matrix blocks. AIChE Journal, 57(2), 286-298. doi.org/10.1002/aic.12262.##
[14]. Firoozabadi, A., & Hauge, J. (1990). Capillary pressure in fractured porous media (includes associated papers 21892 and 22212). Journal of Petroleum Technology, 42(06), 784-791.##
[15]. Harimi, B., M.H. Ghazanfari, M. Masihi (2020), Modeling of the capillary pressure in horizontal rough-walled fractures in the presence of liquid bridges. Journal of Petroleum Science and Engineering. 185. doi.org/10.2118/18747-PA.##
[16]. Harimi, B., Masihi, M., & Ghazanfari, M. H. (2021). An insight into the formation of liquid bridge and its role on fracture capillary pressure during gravity drainage in fractured porous media. The Canadian Journal of Chemical Engineering, 99, S212-S231. doi.org/10.1002/cjce.23988.##
[17]. Dahim, S., Harimi, B., Ghazanfari, M. H., & Masihi, M. (2021). Analysis of liquid bridge characteristics in a horizontal fracture: critical fracture aperture and fracture capillary pressure. Journal of Petroleum Science and Technology, 11(4), 2-13. doi: 10.22078/jpst.2022.4683.1772.##
[18]. Darabi, P., Li, T., Pougatch, K., Salcudean, M., & Grecov, D. (2010). Modeling the evolution and rupture of stretching pendular liquid bridges. Chemical Engineering Science, 65(15), 4472-4483. doi.org/10.1016/j.ces.2010.04.003.##
[19]. Li, Y., & Sprittles, J. E. (2016). Capillary breakup of a liquid bridge: identifying regimes and transitions. Journal of Fluid Mechanics, 797, 29-59. doi.org/10.1017/jfm.2016.276.##
[20]. Adak, Z., & Ghazanfari, M. H. (2024). A new insight into the stability of static and dynamic liquid bridges in smooth-walled horizontal fractures. Journal of Molecular Liquids, 398, 124188, doi.org/10.1016/j.molliq.2024.124188.##
[21]. عباسی، م.، ایزدمهر، م.، شریفی م.، غضنفری م. ح.، کاظمی، ع. ر. و گرامی ش. (۱۳۹۶). مدل‌سازی تحلیلی فرآیند آشام مجدد بین ماتریس‌ها در فرآیند ریزش‌ثقلی در ناحیه مورد هجوم گاز، پژوهش نفت ، دوره 27، 1-96، فروردین و اردیبهشت 1396، صفحه 15-4.##
[22]. Horie, T., Firoozabadi, A., & Ishimoto, K. (1990). Laboratory studies of capillary interaction in fracture/matrix systems. SPE Reservoir Engineering, 5(03), 353-360. doi.org/10.2118/18282-PA.##
[23]. Dindoruk, B., & Firoozabadi, A. (1994, June). Computation of gas-liquid drainage in fractured porous media recognizing fracture liquid flow. In PETSOC Annual Technical Meeting (pp. PETSOC-94). PETSOC. doi.org/10.2118/94-23.##
[24]. Ghazvini, M. G., Kharrat, R., & Masihi, M. (2010). A new mathematical model for force gravity drainage in fractured porous media. Transport in Porous Media, 83, 711-724.##
[25]. Christian M. (2016), Fractured reservoir engineering with modeling and simulation approach. First: Petroleum Industry Research Institute. 262.##
[26]. Gilman, J. R., & Kazemi, H. (1988). Improved calculations for viscous and gravity displacement in matrix blocks in dual-porosity simulators (includes associated papers 17851, 17921, 18017, 18018, 18939, 19038, 19361 and 20174). Journal of Petroleum Technology, 40(01), 60-70. doi.org/10.2118/16010-PA.##
[27]. Kazemi, H., Merrill Jr, L. S., Porterfield, K. L., & Zeman, P. R. (1976). Numerical simulation of water-oil flow in naturally fractured reservoirs. Society of Petroleum Engineers Journal, 16(06), 317-326. doi. org/10.2118/5719-PA.##
[28]. Barenblatt, G. I., Zheltov, I. P., & Kochina, I. N. (1960). Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. Journal of Applied Mathematics and Mechanics, 24(5), 1286-1303.##
[29]. Coats, K. H. (1989, February). Implicit compositional simulation of single-porosity and dual-porosity reservoirs. In SPE Reservoir Simulation Conference? (pp. SPE-18427). SPE. doi.org/10.2118/18427-MS.##
[30]. Sonier, F., Souillard, P., & Blaskovich, F. T. (1988). Numerical simulation of naturally fractured reservoirs. SPE Reservoir Engineering, 3(04), 1114-1122. doi.org/10.2118/15627-PA.##
[31]. Quandalle, P., & Sabathier, J. C. (1989). Typical features of a multipurpose reservoir simulator. SPE reservoir Engineering, 4(04), 475-480. doi.org/10.2118/16007-PA.##
[32]. Ghaedi, M., Masihi, M., Heinemann, Z. E., & Ghazanfari, M. H. (2015). History matching of naturally fractured reservoirs based on the recovery curve method. Journal of Petroleum Science and Engineering, 126, 211-221. doi.org/10.1016/j.petrol.2014.12.002.##