Simulation and Two-phase Void Fraction Measurement Utilizing Gamma Technique in Conjunction with Flat Panel Detector

Document Type : Research Paper

Authors

Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran

Abstract

The presence of bubbles is evident in most two-phase gas-liquid flows. The measurement of void fraction in various industries, such as nuclear, chemical and petrochemical, provides valuable insight into the distribution of phases in a multiphase system. This understanding can lead to the improvements in the design, operation and maintenance of industrial processes in sectors like oil and gas, petrochemicals, chemical reactors, heat exchangers, and geothermal power plants. In many cases, bubbles are evenly distributed in the liquid, creating uncertainty in measurements. To address this issue, this research utilized a wide gamma beam in conjunction with a flat panel detector to minimize systematic errors caused by fluctuations in bubble placement along the path of the gamma ray passing through the flow tube. Next, in the Monte Carlo simulation environment, the numerical density of the bubble is calculated in a fixed volume. Using the calibration chart, the fraction of the bubble is determined in terms of the numerical density for various bubble radius values. Ultimately, after validating the code by comparing the results of the spectrum produced from the code with the spectrum of a reference sample from an X-ray tube, the graph displaying numerical density changes in terms of bubble fraction at different radii demonstrates the method’s ability to distinguish varying amounts of bubble fraction for different radii.

Keywords

Main Subjects


[1]. Bombač, A., Rek, Z., & Levec, J. (2019). Void fraction distribution in a bisectional bubble column reactor. AIChE Journal, 65(4), 1186-1197. doi.org/10.1002/aic.16534.##
[2]. Al Falahi, F., Mueller, G., & Al-Dahhan, M. (2018). Pebble bed nuclear reactor structure study: A comparison of the experimental and calculated void fraction distribution. Progress in Nuclear Energy, 106, 153-161. doi.org/10.1016/j.pnucene.2018.03.006. ##
[3]. Kim, M. S., Choi, J., KIM, Y. C., HWANG, D. G., HONG, S. B., & LEE, K. H. (2007). Measurement of void fraction in hydrogen moderator used for moderator cell of Hanaro cold neutron source. Session IV, 15. ##
[4]. Kok, H. V., & Van der Hagen, T. H. J. J. (1999). Design of a simulated void-reactivity feedback in a boiling water reactor loop. Nuclear technology, 128(1), 1-11. doi.org/10.13182/NT99-A3009. ##
[5]. Wang, X., Chen, Y., Wang, B., Tang, K., & Hu, H. (2020). Sectional void fraction measurement of gas-water two-phase flow by using a capacitive array sensor. Flow Measurement and Instrumentation, 74, 101788. doi.org/10.1016/j.flowmeasinst.2020.101788. ##
[6]. Alamoudi, M., Sattari, M. A., Balubaid, M., Eftekhari-Zadeh, E., Nazemi, E., Taylan, O., & Kalmoun, E. M. (2021). Application of gamma attenuation technique and artificial intelligence to detect scale thickness in pipelines in which two-phase flows with different flow regimes and void fractions exist. Symmetry, 13(7), 1198. doi.org/10.3390/sym13071198. ##
[7]. بیگ زاده، امیرمحمد، اطاعتی، غلامرضا، آفریده، حسین، اسدی امیرآبادی، اسکندر، و بیات، اسمعیل. (1391). تعیین کسر حباب در سیال دو فازی با استفاده از چگالی سنج گاما. کنفرانس هسته‌ای ایران. ##SID. https://sid.ir/paper/824706/fa
[8]. Boorboor, S., Feghhi, S. A. H., & Jafari, H. (2023). Design and construction of an LSTM-powered high sampling rate dual-beam gamma densitometer for real-time measurement of the two-phase flow void fraction. Nuclear Engineering and Design, 411, 112444. doi.org/10.1016/j.nucengdes.2023.112444. ##
[9]. Fouladinia, F., Alizadeh, S. M., Gorelkina, E. I., Hameed Shah, U., Nazemi, E., Guerrero, J. W. G., Roshani, G.H. & Imran, A. (2024). A novel metering system consists of capacitance-based sensor, gamma-ray sensor and ANN for measuring volume fractions of three-phase homogeneous flows. Nondestructive Testing and Evaluation, 1-27. doi.org/10.1080/10589759.2024.2375575. ##
[10]. Swinehart, D. F. (1962). The beer-lambert law. Journal of chemical education, 39(7), 333. doi.org/10.1021/ed039p333. ##
[11]. Pelowitz, D. B. (2011). MCNPX™ user’s manual, version 2.7. 0. la-cp-11-00438. Los Alamos National Laboratory. ##
[12]. Martin, C. J., Temperton, D. H., Jupp, T., & Hughes, A. (2019). IPEM topical report: personal dose monitoring requirements in healthcare. Physics in Medicine & Biology, 64(3), 035008. ##