Multi-Objective Optimization of Underground Hydrogen Storage Operation in a Depleted Gas Reservoir Using Smart Proxy Models

Document Type : Research Paper

Authors

Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran

Abstract

Global warming and climate change, driven by rising greenhouse gas emissions, are among the most critical challenges of our time. To address this, various solutions have been developed, including net-zero carbon strategies such as carbon capture and storage, as well as energy transition efforts to reduce or replace fossil fuels with renewable sources. However, the intermittent nature of clean energy production necessitates large-scale storage systems to ensure a stable energy supply. Hydrogen, as an energy carrier, presents a promising solution, with underground hydrogen storage (UHS) offering the potential for sustainable energy supply during peak demand. Due to hydrogen’s unique characteristics and dynamic behavior in porous media, complex compositional modeling and time-intensive physics-based simulations are required to determine optimal storage scenarios. This paper first simulates UHS in a depleted gas reservoir, then based on simulation results a proxy model is developed and utilized for multi-objective optimization. Given the presence of remaining gas and the complex phase behavior of reservoir fluids, hydrogen recovery factor and purity were selected as decision variables for optimization. The design of experiment methods, such as Latin hypercube sampling, generated the necessary training and testing subsets for an artificial neural network model. The feed-forward model, incorporating 10 neurons and a sigmoid activation function as a smart proxy, achieved the highest accuracy—0.97 for training and 0.94 for testing—in predicting hydrogen purity and recovery factor, effectively guiding multi-objective optimization of decision variables via a genetic algorithm. Furthermore, Pareto front analysis of optimal solutions revealed nitrogen gas as the dominant component in the injected cushion gas composition, consisting of 75% nitrogen, 20% carbon dioxide, and 5% methane. The results also identified production from top perforations and hydrogen injection in lower perforations as optimal conditions. The approach outlined in this study can support UHS field applications and facilitate rapid decision-making in large-scale energy storage operations.

Keywords

Main Subjects


[1]. Vanek, F., Albright, L., & Angenent, L. (2008). Energy systems engineering. McGraw-Hill Professional Publishing. ##
[2]. Bahrami, M., Izadi Amiri, E., Zivar, D., Ayatollahi, S., & Mahani, H. (2023). Challenges in the simulation of underground hydrogen storage: A review of relative permeability and hysteresis in hydrogen-water system. Journal of Energy Storage, 73, 108886. doi:10.1016/j.est.2023.108886. ##
[3]. Sampene, A., Li, C., Agyeman, F., & Brenya, R. (2021). Analysis of the BRICS countries’ pathways towards a low-carbon environment. BRICS Journal of Economics, 2(4), 77-102. ##
[4]. Zivar, D., Kumar, S., & Foroozesh, J. (2021). Underground hydrogen storage: A comprehensive review. International Journal of Hydrogen Energy, 46(45), 23436-23462. doi:10.1016/j.ijhydene.2020.08.138. ##
[5]. Zeng, L., Sarmadivaleh, M., Saeedi, A., Chen, Y., Zhong, Z., & Xie, Q. (2023). Storage integrity during underground hydrogen storage in depleted gas reservoirs. Earth-Science Reviews, 247, 104625. doi:10.1016/j.earscirev.2023.104625. ##
[6]. Pérez-Vigueras, M., Sotelo-Boyás, R., de Guadalupe González-Huerta, R., & Bañuelos-Ruedas, F. (2023). Feasibility analysis of green hydrogen production from oceanic energy. Heliyon, 9(9). doi:10.1016/j.heliyon.2023.e20046. ##
[7]. Juez-Larré, J., Gonçalves Machado, C., Yousefi, H., Wang, T. K., Groenenberg, R., & Van Gessel, S. (2023, May). (Pre) feasibility study of underground hydrogen storage potential in depleted gas fields and salt caverns in the Netherlands. In EGU General Assembly Conference Abstracts (pp. EGU-10005). doi.org/10.5194/egusphere-egu23-10005. ##
[8]. Raad, S. M. J., Leonenko, Y., & Hassanzadeh, H. (2022). Hydrogen storage in saline aquifers: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 168, 112846. doi:10.1016/j.rser.2022.112846. ##
[9]. Talukdar, M., Blum, P., Heinemann, N., & Miocic, J. (2024). Techno-economic analysis of underground hydrogen storage in Europe. Iscience, 27(1). doi:10.1016/j.isci.2023.108771. ##
[10]. Gloc, M., Szwed, M., Zagórski, A., & Mizera, J. (2018). Hydrogen influence on microstructure, corrosionresistance and mechanical properties of low alloy steel and explosively cladded steel used for hydrogen storage salt caverns. Applied Mechanics and Materials, 875, 47-52. doi:10.4028/www.scientific.net/amm.875.47. ##
[11]. Zhu, S., Shi, X., Yang, C., Li, Y., Li, H., Yang, K., Wei, X., Bai, W. & Liu, X. (2023). Hydrogen loss of salt cavern hydrogen storage. Renewable Energy, 218, 119267. doi:10.1016/j.renene.2023.119267. ##
[12]. Le Duigou A, Bader A-G, Lanoix J-C, Nadau L.(2017). Relevance and costs of large scale underground hydrogen storage in France. Int J Hydrog Energy.;42(36):22987-23003. doi:10.1016/j.ijhydene.2017.06.239. ##
[13]. Thaysen, E. M., McMahon, S., Strobel, G. J., Butler, I. B., Ngwenya, B. T., Heinemann, N., Wilkinson, M., Hassanpouryouzband, A., McDermott, C.I. & Edlmann, K. (2021). Estimating microbial growth and hydrogen consumption in hydrogen storage in porous media. Renewable and Sustainable Energy Reviews, 151, 111481. doi:10.1016/j.rser.2021.111481. ##
[14]. Bagheri, M., Mahani, H., Ayatollahi, S., & Zivar, D. (2023). Direct pore-scale simulation of the effect of capillary number and gas compressibility on cyclic underground hydrogen storage & production in heterogeneous aquifers. Advances in Water Resources, 181, 104547. doi:10.1016/j.advwatres.2023.104547. ##
[15]. Muhammed, N. S., Haq, B., Al Shehri, D., Al-Ahmed, A., Rahman, M. M., & Zaman, E. (2022). A review on underground hydrogen storage: Insight into geological sites, influencing factors and future outlook. Energy Reports, 8, 461-499. doi:10.1016/j.egyr.2021.12.002. ##
[16]. Kalati, S. S., Khiabani, N. P., Ayatollahi, S., Mahani, H., Zivar, D., & Esmaeilbeig, M. A. (2024). Molecular dynamics simulation of hydrogen diffusion into brine: Implications for underground hydrogen storage. International Journal of Hydrogen Energy, 53, 17-28. doi:10.1016/j.ijhydene.2023.11.318. ##
[17]. Kumar, K. R., & Hajibeygi, H. (2021). Multiscale simulation of inelastic creep deformation for geological rocks. Journal of Computational Physics, 440, 110439. doi:10.1016/j.jcp.2021.110439. ##
[18]. Kanaani, M., Sedaee, B., Asadian-Pakfar, M., Gilavand, M., & Almahmoudi, Z. (2023). Development of multi-objective co-optimization framework for underground hydrogen storage and carbon dioxide storage using machine learning algorithms. Journal of Cleaner Production, 386, 135785. doi:10.1016/j.jclepro.2022.135785. ##
[19]. Zheng, F., Jahandideh, A., Jha, B., & Jafarpour, B. (2021). Geologic CO2 storage optimization under geomechanical risk using coupled-physics models. International Journal of Greenhouse Gas Control, 110, 103385. doi:10.1016/j.ijggc.2021.103385. ##
[20]. Park, C., Oh, J., Jo, S., Jang, I., & Lee, K. S. (2021). Multi-objective optimization of CO2 sequestration in heterogeneous saline aquifers under geological uncertainty. Applied Sciences, 11(20), 9759. doi.org/10.3390/app11209759. ##
[21]. Kashkooli, S. B., Gandomkar, A., Riazi, M., & Tavallali, M. S. (2022). Coupled optimization of carbon dioxide sequestration and CO2 enhanced oil recovery. Journal of Petroleum Science and Engineering, 208, 109257. doi:10.1016/j.petrol.2021.109257. ##
[22]. Vaziri, P., & Sedaee, B. (2024). An application of a genetic algorithm in co-optimization of geological CO2 storage based on artificial neural networks. Clean Energy, 8(1), 111-125. doi:10.1093/ce/zkad077. ##
[23]. Saeed, M., & Jadhawar, P. (2024). Optimizing underground hydrogen storage in aquifers: The impact of cushion gas type. International Journal of Hydrogen Energy, 52, 1537-1549. doi:10.1016/j.ijhydene.2023.08.352. ##
[24]. Da Silva, L. M., Avansi, G. D., & Schiozer, D. J. (2020). Development of proxy models for petroleum reservoir simulation: a systematic literature review and state-of-the-art. International Journal of Advanced Engineering Research and Science, 7(10), 36-62. doi:10.22161/ijaers.710.5. ##
[25]. Bahrami, P., Sahari Moghaddam, F., & James, L. A. (2022). A review of proxy modeling highlighting applications for reservoir engineering. Energies, 15(14), 5247. doi:10.3390/en15145247. ##
[26]. Matthew, D. A. M., Jahanbani Ghahfarokhi, A., Ng, C. S. W., & Nait Amar, M. (2023). Proxy model development for the optimization of water alternating CO2 gas for enhanced oil recovery. Energies, 16(8), 3337. doi:10.3390/en16083337. ##
[27]. مقسمی، ح.، علیزاده سواره، ب. (1394). داده کاوی با MATLAB وIBM SPSS Modeler. انتشارات کاوشگران جوان رایانه. ##
[26]. Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms. John Wiley & Sons.
[27]. Yang X-S.(2010). Engineering Optimization. Wiley-Blackwell. doi:10.1002/9780470640425. ##
[28]. Sheshbolouky, M., Kheirollahi, H. and Khodapanah, E. (2024). Using multi-objective optimization genetics algorithm for co-estimation of saturation functions by piecewise model. Journal Petroleum Research. 2024;34(1403-2):72-90. doi:10.22078/pr.2024.5266.3337. ##