[1] Vamvuka, D., J. Elmazaj, and M. Berkis. (2023) Enhanced H2 gas production from steam gasification of a winery waste through CO2 capture by waste concrete fines and use of alkali catalysts. Renewable Energy, 119428. https://doi.org/10.1016/j.renene.2023.119428.##
[2] Qazi, U. Y. (2022). Future of hydrogen as an alternative fuel for next-generation industrial applications; challenges and expected opportunities. Energies, 15(13), 4741 https://doi.org/10.3390/en15134741. ##
[3] Tarhan, C., Çil, M. A. (2021). A study on hydrogen, the clean energy of the future: Hydrogen storage methods. Journal of Energy Storage, 40, 102676. https://doi.org/10.1016/j.est.2021.102676. ##
[4] Baykara, S. Z. (2018). Hydrogen: A brief overview on its sources, production and environmental impact. International Journal of Hydrogen Energy, 43(23), 10605-10614. https://doi.org/10.1016/j.ijhydene.2018.02.022. ##
[5] Ishaq, H., Dincer, I., Crawford, C. (2022). A review on hydrogen production and utilization: Challenges and opportunities. International Journal of Hydrogen Energy, 47(62), 26238-26264.
https://doi.org/10.1016/j. ijhydene.2021.11.149. ##
[6] Nikolaidis, P., Poullikkas, A. (2017). A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews, 67, 597-611. doi.org/10.1016/j.rser.2016.09.044. ##
[7] Ji, M., Wang, J. (2021). Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. International Journal of Hydrogen Energy, 46(78), 38612-38635. doi.org/10.1016/j.ijhydene.2021.09.142. ##
[8] Kayfeci, M., Keçebaş, A., Bayat, M. (2019). Hydrogen production. In Solar hydrogen production (pp. 45-83). Academic Press. doi.org/10.1016/B978-0-12-814853-2.00003-5. ##
[9] Hassan, Q., Sameen, A. Z., Salman, H. M., Jaszczur, M., Al-Jiboory, A. K. (2023). Hydrogen energy future: Advancements in storage technologies and implications for sustainability. Journal of Energy Storage, 72, 108404. doi.org/10.1016/j.est.2023.108404. ##
[10]. Łamacz, A., Krztoń, A. (2013). Hydrogen production by catalytic decomposition of selected hydrocarbons and H2O dissociation over CeZrO2 and Ni/CeZrO2. International Journal of Hydrogen Energy, 38(21), 8772-8782. doi.org/10.1016/j.ijhydene.2013.04.156. ##
[11]. Marquardt, T., Bode, A., Kabelac, S. (2020). Hydrogen production by methane decomposition: Analysis of thermodynamic carbon properties and process evaluation. Energy Conversion and Management, 221, 113125. doi.org/10.1016/j.enconman.2020.113125. ##
[12]. Yang, M., Baeyens, J., Li, S., Zhang, H. (2024). Hydrogen and Carbon Produced by Fluidized Bed Catalytic Methane Decomposition. Chemical Engineering Research and Design. doi.org/10.1016/j.cherd.2024.01.069. ## [13]. Younas, M., Shafique, S., Hafeez, A., Javed, F., & Rehman, F. (2022). An overview of hydrogen production: current status, potential, and challenges. Fuel, 316, 123317. doi.org/10.1016/j.fuel.2022.123317. ##
[14]. Zeng, X., Fang, M., Lv, T., Tian, J., Xia, Z., Cen, J., Wang, Q. (2022). Hydrogen-rich gas production by catalytic steam gasification of rice husk using CeO2-modified Ni-CaO sorption bifunctional catalysts. Chemical Engineering Journal, 441, 136023. doi.org/10.1016/j.cej.2022.136023. ##
[15]. Mokheimer, E. M. A., Shakeel, M. R., Harale, A., Paglieri, S., Mansour, R. B. (2024). Fuel reforming processes for hydrogen production. Fuel, 359, 130427. doi.org/10.1016/j.fuel.2023.13042. ##
[16]. Sene, R. A., Moradi, G. R., Sharifnia, S., & Rahmani, F. (2020). Hydrogen evolution via water splitting using TiO2 nanoparticles immobilized on aluminosilicate mineral: synergistic effect of porous mineral and TiO2 content. Desalination and Water Treatment, 208, 273-286. doi.org/10.5004/dwt.2020.26403##
[17]. Franchi, G., Capocelli, M., De Falco, M., Piemonte, V., Barba, D. (2020). Hydrogen production via steam reforming: A critical analysis of MR and RMM technologies. Membranes, 10(1), 10. .doi.org/10.3390/membranes10010010. ##
[18]. Izquierdo, U., Barrio, V. L., Cambra, J. F., Requies, J., Güemez, M. B., Arias, P. L., Kolb, G., Zapf, R., Gutiérrez, A.M. and Arraibi, J. R. (2012). Hydrogen production from methane and natural gas steam reforming in conventional and microreactor reaction systems. International Journal of Hydrogen Energy, 37(8), 7026-7033. doi.org/10.1016/j.ijhydene.2011.11.048. ##
[19]. Taji, M., Farsi, M. and Keshavarz, P. (2018). Real time optimization of steam reforming of methane in an industrial hydrogen plant. International Journal of Hydrogen Energy, 43(29), 13110-13121. doi.org/10.1016/j.ijhydene.2018.05.094. ##
[20]. Harun, K., Adhikari, S., Jahromi, H. (2020). Hydrogen production via thermocatalytic decomposition of methane using carbon-based catalysts. RSC advances, 10(67), 40882-40893. doi:10.1039/D0RA07440C. ##
[21]. Duma, Z. G., Swartbooi, A., Musyoka, N. M. (2024). Thermocatalytic decomposition of methane to low-carbon hydrogen using LaNi1-xCuxO3 perovskite catalysts. Applied Catalysis A: General, 119703. doi.org/10.1016/j.apcata.2024.119703. ##
[22]. Salib, C. Q., Perez-Lopez, O. W. (2024). Hydrogen production by methane decomposition over Cu-Ni-Al-LDH: Influence of Ni/Cu ratio and catalyst activation. Fuel, 364, 131120. doi.org/10.1016/j.fuel.2024.131120. ##
[23]. Muhammad, A. F. A. S., Awad, A., Saidur, R., Masiran, N., Salam, A., Abdullah, B. (2018). Recent advances in cleaner hydrogen productions via thermo-catalytic decomposition of methane: Admixture with hydrocarbon. International Journal of Hydrogen Energy, 43(41), 18713-18734. doi.org/10.1016/j.ijhydene.2018.08.091. ##
[24]. Musamali, R., & Isa, Y. M. (2019). Decomposition of methane to carbon and hydrogen: a catalytic perspective. Energy Technology, 7(6), 1800593. doi.org/10.1002/ente.201800593. ##
[25]. Keipi, T., Tolvanen, K. E., Tolvanen, H., Konttinen, J. (2016). Thermo-catalytic decomposition of methane: The effect of reaction parameters on process design and the utilization possibilities of the produced carbon. Energy Conversion and Management, 126, 923-934. doi.org/10.1016/j.enconman.2016.08.060. ##
[26]. Ashik, U. P. M., Daud, W. W., Abbas, H. F. (2015). Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane–A review. Renewable and Sustainable Energy Reviews, 44, 221-256. doi.org/10.1016/j.rser.2014.12.025. ##
[27]. Alves, L., Pereira, V., Lagarteira, T. and Mendes, A. (2021). Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements. Renewable and Sustainable Energy Reviews, 137, 110465. doi.org/10.1016/j.rser.2020.110465. ##
[28]. Raza, J., Khoja, A. H., Anwar, M., Saleem, F., Naqvi, S. R., Liaquat, R., Hassan, M., Javaid, R., Qazi, U.Y. and Lumbers, B. (2022). Methane decomposition for hydrogen production: A comprehensive review on catalyst selection and reactor systems. Renewable and Sustainable Energy Reviews, 168, 112774. doi.org/10.1016/j.rser.2022.112774. ##
[29]. Muto, T., Asahara, M., Miyasaka, T., Asato, K., Uehara, T., Koshi, M. (2023). Methane pyrolysis characteristics for the practical application of hydrogen production system using permalloy plate catalyst. Chemical Engineering Science, 274, 117931. doi.org/10.1016/j.ces.2022.117931. ##
[30]. Abdalla, A. M., Hossain, S., Nisfindy, O. B., Azad, A. T., Dawood, M. and Azad, A. K. (2018). Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management, 165, 602-627. doi.org/10.1016/j.enconman.2018.03.088. ##
[31]. Saraswat, S. K. and Pant, K. K. (2013). Synthesis of hydrogen and carbon nanotubes over copper promoted Ni/SiO2 catalyst by thermocatalytic decomposition of methane. Journal of Natural Gas Science and Engineering, 13, 52-59. doi.org/10.1016/j.jngse.2013.04.001 . ##
[32]. Dipu, A. L. (2021). Methane decomposition into COx‐free hydrogen over a Ni‐based catalyst: an overview. International Journal of Energy Research, 45(7), 9858-9877. doi.org/10.1002/er.6541##
[33]. Younas, M., Shafique, S., Hafeez, A., Javed, F. and Rehman, F. (2022). An overview of hydrogen production: current status, potential, and challenges. Fuel, 316, 123317. doi.org/10.1016/j.fuel.2022.123317. ##
[34]. Al-Hassani, A. A., Abbas, H. F. and Daud, W. W. (2014). Production of COx-free hydrogen by the thermal decomposition of methane over activated carbon: Catalyst deactivation. International journal of hydrogen energy, 39(27), 14783-14791. doi.org/10.1016/j.ijhydene.2014.07.031. ##
[35]. Noh, Y. G., Lee, Y. J., Kim, J., Kim, Y. K., Ha, J., Kalanur, S. S. and Seo, H. (2022). Enhanced efficiency in CO2-free hydrogen production from methane in a molten liquid alloy bubble column reactor with zirconia beads. Chemical Engineering Journal, 428, 131095. doi.org/10.1016/j.jiec.2022.05.008. ##
[36]. Keipi, T., Tolvanen, H. and Konttinen, J. (2018). Economic analysis of hydrogen production by methane thermal decomposition: Comparison to competing technologies. Energy Conversion and Management, 159, 264-273. doi.org/10.1016/j.enconman.2017.12.063. ##
[37]. Kannah, R. Y., Kavitha, S., Karthikeyan, O. P., Kumar, G., Dai-Viet, N. V. and Banu, J. R. (2021). Techno-economic assessment of various hydrogen production methods–A review. Bioresource technology, 319, 124175. doi.org/10.1016/j.biortech.2020.124175. ##
[38]. Hadian, M., Buist, K. and Kuipers, H. (2023). An overview of production of hydrogen and carbon nanomaterials via thermocatalytic decomposition of methane. Current Opinion in Chemical Engineering, 42, 100968. doi.org/10.1016/j.coche.2023.100968. ##
[39]. Rao, G. R., Meher, S. K., Mishra, B. G. and Charan, P. H. K. (2012). Nature and catalytic activity of bimetallic CuNi particles on CeO2 support. Catalysis today, 198(1), 140-147. doi.org/10.1016/j.cattod.2012.06.027. ##
[40]. Abbas, H. F., Daud, W. W. (2010). Hydrogen production by methane decomposition: A review. International Journal of Hydrogen Energy, 35(3), 1160-1190. doi.org/10.1016/j.ijhydene.2009.11.036. ##
[41]. Choi, J. B., Im, J. S., Kang, S. C., Lee, Y. S. and Lee, C. W. (2023). Effect of metal–support interaction in Ni/SiO2 catalysts on the growth of carbon nanotubes by methane decomposition. Carbon Letters, 33(2), 477-488. doi:10.1007/s42823-022-00438-3. ##
[42]. Wang, I. W., Dagle, R. A., Khan, T. S., Lopez-Ruiz, J. A., Kovarik, L., Jiang, Y., Xu, M., Wang, Y., Jiang, C., Davidson, S.D. and Hu, J. (2021). Catalytic decomposition of methane into hydrogen and high-value carbons: combined experimental and DFT computational study. Catalysis Science Technology, 11(14), 4911-4921. doi.org/10.1039/D1CY00287B. ##
[43]. Wu, C. and Williams, P. T. (2009). Investigation of Ni-Al, Ni-Mg-Al and Ni-Cu-Al catalyst for hydrogen production from pyrolysis–gasification of polypropylene. Applied Catalysis B: Environmental, 90(1-2), 147-156. doi.org/10.1016/j.apcatb.2009.03.004. ##
[44]. Ko, D. H., Kang, S. C., Lee, C. W. and Im, J. S. (2022). Effects of support porosity of Co-Mo/MgO catalyst on methane catalytic decomposition for carbon and hydrogen production. Journal of Industrial and Engineering Chemistry, 112, 162-170. doi.org/10.1016/j.jiec.2022.05.008. ##
[45]. Wang, H. Y. and Lua, A. C. (2013). Hydrogen production by thermocatalytic methane decomposition. Heat transfer engineering, 34(11-12), 896-903. doi.org/10.1080/01457632.2012.752682. ##
[46]. Liu, Q., Wu, P., He, J., Jiang, W. and Liu, C. (2022). NiFe/Al2O3/Fe-frame catalyst for COx-free hydrogen evolution from catalytic decomposition of methane: Performance and kinetics. Chemical Engineering Journal, 436, 133366. doi.org/10.1016/j.cej.2021.133366. ##
[47]. Lua, A. C. and Wang, H. Y. (2014). Hydrogen production by catalytic decomposition of methane over Ni-Cu-Co alloy particles. Applied Catalysis B: Environmental, 156, 84-93. .doi.org/10.1016/j.apcatb.2014.02.046. ##
[48]. Alharthi, A. I., Abdel Fattah, E., Hargreaves, J. S., Alotaibi, M. A., Din, I. U. and Al-Shalwi, M. N. (2023). Influence of Zn and Ni dopants on the physicochemical and activity patterns of CoFe2O4 derived catalysts for hydrogen production by catalytic cracking of methane. Journal of Alloys and Compounds, 938, 168437. doi.org/10.1016/j.jallcom.2022.168437. ##
[49]. Mahmoudabadi, Z. S., Rashidi, A. and Panahi, M. (2023). Controlled growth of graphene on γ-Al2O3 as highly efficient nanocomposite support of NiMoW catalysts by engineering approaches of chemical vapor deposition technique for hydrotreating of vacuum gas oil. Fuel, 350, 128778. doi.org/10.1016/j.fuel.2023.128778. ##
[50]. Borghei, M., Karimzadeh, R., Rashidi, A., Izadi, N. (2010). Kinetics of methane decomposition to COx-free hydrogen and carbon nanofiber over Ni–Cu/MgO catalyst. International Journal of Hydrogen Energy, 35(17), 9479-9488. doi.org/10.1016/j.ijhydene.2010.05.072##
[51]. Izadi, N., Rashidi, A., Borghei, M., Karimzadeh, R. and Tofigh, A. (2012). Synthesis of carbon nanofibres over nanoporous Ni–MgO catalyst: influence of the bimetallic Ni–(Cu, Co, Mo) MgO catalysts. Journal of Experimental Nanoscience, 7(2), 160-173 doi.org/10.1080/17458080.2010.513019. ##
[52]. Ermakova, M. A., Ermakov, D. Y. and Kuvshinov, G. G. (2000). Effective catalysts for direct cracking of methane to produce hydrogen and filamentous carbon: Part I. Nickel catalysts. Applied Catalysis A: General, 201(1), 61-70. doi:10.1016/S0926-860X(00)00433-6. ##
[53]. Meloni, E., Martino, M., & Palma, V. (2020). A short review on Ni based catalysts and related engineering issues for methane steam reforming. Catalysts, 10(3), 352. doi.org/10.3390/catal10030352. ##
[54]. Wu, H., La Parola, V., Pantaleo, G., Puleo, F., Venezia, A. M. and Liotta, L. F. (2013). Ni-based catalysts for low temperature methane steam reforming: recent results on Ni-Au and comparison with other bi-metallic systems. Catalysts, 3(2), 563-583. doi.org/10.3390/catal3020563. ##
[55]. Gonzalez-Castãno, M., Morales, C., de Miguel, J. N., Boelte, J. H., Klepel, O., Flege, J. I., & Arellano-García, H. (2023). Are Ni/and Ni5Fe1/biochar catalysts suitable for synthetic natural gas production? A comparison with γ-Al2O3 supported catalysts. Green Energy & Environment, 8(3), 744-756. doi.org/10.1016/j.gee.2021.05.007. ##
[56]. براتی، م. (1402). ساخت و مشخصه یابی نانوکاتالیست نیکل بر پایه اکسید منیزیم مزو حفره به منظور تولید هیدروژن به روش تجزیه ترموکاتالیستی متان (TCD) ، پایان نامه دکتری، دانشگاه تهران جنوب، ایران. ##
[57]. سلیمانی، م. (1402). ساخت کاتالیست Fe-Mo بر پایه کربن مزوحفره جهت حذف گوگرد از سوخت هیدروکربنی و بهبود شرایط عملیاتی در فرآیند HDS، پایان نامه دکتری، دانشگاه تربیت مدرس، ایران. ##
[58]. Karimi, S., Bibak, F., Meshkani, F., Rastegarpanah, A., Deng, J., Liu, Y. and Dai, H. (2021). Promotional roles of second metals in catalyzing methane decomposition over the Ni-based catalysts for hydrogen production: A critical review. International Journal of Hydrogen Energy, 46(39), 20435-20480. doi.org/10.1016/j.ijhydene.2021.03.160. ##
[59]. Wang, D., Zhang, J., Sun, J., Gao, W. and Cui, Y. (2019). Effect of metal additives on the catalytic performance of Ni/Al2O3 catalyst in thermocatalytic decomposition of methane. International Journal of Hydrogen Energy, 44(14), 7205-7215. doi.org/10.1016/j.ijhydene.2019.01.272. ##
[60]. Ibrahim, A. A., Al‐Fatesh, A. S., Khan, W. U., Soliman, M. A., Al Otaibi, R. L. and Fakeeha, A. H. (2015). Influence of support type and metal loading in methane decomposition over iron catalyst for hydrogen production. Journal of the Chinese Chemical Society, 62(7), 592-599. doi.org/10.1002/jccs.201500052. ##
[61]. Shin, D., Huang, R., Jang, M. G., Choung, S., Kim, Y., Sung, K., Kim, T.Y. and Han, J. W. (2022). Role of an interface for hydrogen production reaction over size-controlled supported metal catalysts. ACS Catalysis, 12(13),8082-8093. doi.org/10.1021/acscatal.2c02370. ##
[62]. Guil-Lopez, R., Botas, J. A., Fierro, J. L. G. and Serrano, D. P. (2011). Comparison of metal and carbon catalysts for hydrogen production by methane decomposition. Applied Catalysis A: General, 396(1-2), 40-51. doi.org/10.1016/j.apcata.2011.01.036. ##
[63]. Dal Santo, V., Gallo, A., Naldoni, A., Guidotti, M. and Psaro, R. (2012). Bimetallic heterogeneous catalysts for hydrogen production. Catalysis Today, 197(1), 190-205. doi.org/10.1016/j.cattod.2012.07.037. ##
[64]. De, S., Zhang, J., Luque, R., and Yan, N. (2016). Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy & Environmental Science, 9(11), 3314-3347. doi.org/10.1016/j.cattod.2012.07.037. ##
[65]. Al-Fatesh, A. S., Fakeeha, A. H., Khan, W. U., Ibrahim, A. A., He, S. and Seshan, K. (2016). Production of hydrogen by catalytic methane decomposition over alumina supported mono-, bi-and tri-metallic catalysts. International Journal of Hydrogen Energy, 41(48), 22932-22940. doi.org/10.1016/j.ijhydene.2016.09.027. ##
[66]. Taherian, Z., Khataee, A., Han, N. and Orooji, Y. (2022). Hydrogen production through methane reforming processes using promoted-Ni/mesoporous silica: A review. Journal of Industrial and Engineering Chemistry, 107, 20-30. doi.org/10.1016/j.jiec.2021.12.006. ##
[67]. Karaismailoglu, M., Figen, H. E., and Baykara, S. Z. (2019). Hydrogen production by catalytic methane decomposition over yttria doped nickel based catalysts. International Journal of Hydrogen Energy, 44(20), 9922-9929. doi.org/10.1016/j.ijhydene.2018.12.214. ##
[68]. Al Alwan, B. A., Shah, M., Danish, M., Al Mesfer, M. K., Khan, M. I. and Natarajan, V. (2022). Enhanced methane decomposition over transition metal-based tri-metallic catalysts for the production of COx free hydrogen. Journal of the Indian Chemical Society, 99(4), 100393. doi.org/10.1016/j.jics.2022.100393. ##
[69]. Wang, H., Diao, Y., Gao, Z., Smith, K. J., Guo, X., Ma, D. and Shi, C. (2022). H2 production from methane reforming over molybdenum carbide catalysts: From surface properties and reaction mechanism to catalyst development. ACS Catalysis, 12(24), 15501-15528. doi.org/10.1021/acscatal.2c04619. ##
[70]. Lustemberg, P. G., Mao, Z., Salcedo, A., Irigoyen, B., Ganduglia-Pirovano, M. V. and Campbell, C. T. (2021). Nature of the active sites on Ni/CeO2 catalysts for methane conversions. ACS catalysis, 11(16), 10604-10613. doi.org/10.1021/acscatal.1c02154. ##
[71]. Wang, G., Jin, Y., Liu, G., and Li, Y. (2013). Production of hydrogen and nanocarbon from catalytic decomposition of methane over a Ni–Fe/Al2O3 catalyst. Energy & fuels, 27(8), 4448-4456. doi.org/10.1021/ef3019707. ##
[72]. Cazaña, F., Afailal, Z., González-Martín, M., Sánchez, J. L., Latorre, N., Romeo, E., Arauzo, J. and Monzón, A. (2022). Hydrogen and CNT production by methane cracking using Ni–Cu and Co–Cu catalysts supported on argan-derived carbon. ChemEngineering, 6(4), 47. doi.org/10.3390/chemengineering6040047. ##
[73]. Wang, D., Li, W., Liu, J., Gao, Z., Xu, G. and Cui, Y. (2020). Methane thermocatalytic decomposition to COx-free hydrogen and carbon nanomaterials over Ni–Mn–Ru/Al2O3 catalysts. International Journal of Hydrogen Energy, 45(55), 30431-30442. doi.org/10.1016/j.ijhydene.2020.08.039. ##
[74]. Bayahia, H., Fakeeha, A. H., Al-Zahrani, S. A., Alreshaidan, S. B., Al-Awadi, A. S., Alotibi, M. F., Kumar, R. and Al-Fatesh, A. S. (2023). COx-Free H2 Production via Catalytic Decomposition of CH4 over Fe Supported on Tungsten Oxide-Activated Carbon Catalyst: Effect of Tungsten Loading. Arabian Journal of Chemistry, 16(6), 104781. doi.org/10.1016/j.arabjc.2023.104781. ##
[75]. Li, Y., Chen, J., Qin, Y. and Chang, L. (2000). Simultaneous production of hydrogen and nanocarbon from decomposition of methane on a nickel-based catalyst. Energy Fuels, 14(6), 1188-1194. doi:10.1021/ef0000781. ##
[76]. Khzouz, M., Wood, J., Pollet, B. and Bujalski, W. (2013). Characterization and activity test of commercial Ni/Al2O3, Cu/ZnO/Al2O3 and prepared Ni–Cu/Al2O3 catalysts for hydrogen production from methane and methanol fuels. International Journal of Hydrogen Energy, 38(3), 1664-1675. doi.org/10.1016/j.ijhydene.2012.07.026. ##
[77]. Pudukudy, M. and Yaakob, Z. (2015). Methane decomposition over Ni, Co and Fe based monometallic catalysts supported on sol gel derived SiO2 microflakes. Chemical Engineering Journal, 262, 1009-1021. doi.org/10.1016/j.apcatb.2009.03.004. ##
[78]. Torres, D., Pinilla, J. L., and Suelves, I. (2018). Co-, Cu-and Fe-doped Ni/Al2O3 catalysts for the catalytic decomposition of methane into hydrogen and carbon nanofibers. Catalysts, 8(8), 300. doi.org/10.1016/j.ijhydene.2018.12.214. ##
[79]. Zhang, J., Li, X., Chen, H., Qi, M., Zhang, G., Hu, H. and Ma, X. (2017). Hydrogen production by catalytic methane decomposition: Carbon materials as catalysts or catalyst supports. International Journal of Hydrogen Energy, 42(31), 19755-19775. doi.org/10.1016/j.ijhydene.2017.06.197. ##
[80]. Wang, S., Shan, R., Gu, J., Huhe, T., Ling, X., Yuan, H. and Chen, Y. (2022). High-yield H2 production from polypropylene through pyrolysis-catalytic reforming over activated carbon based nickel catalyst. Journal of Cleaner Production, 352, 131566. doi.org/10.1016/j.jclepro.2022.131566. ##
[81]. Suelves, I., Lázaro, M.J., Moliner, R., Pinilla, J.L. and Cubero, H., 2007. Hydrogen production by methane decarbonization: carbonaceous catalysts. International journal of Hydrogen Energy, 32(15), 3320-3326, ISSN 0360-3199, doi.org/10.1016/j.ijhydene.2007.05.028. ##
[82]. Moliner, R., Suelves, I., Lázaro, M. J., & Moreno, O. (2005). Thermocatalytic decomposition of methane over activated carbons: influence of textural properties and surface chemistry. International Journal of Hydrogen Energy, 30(3), 293-300, ISSN 0360-3199, doi.org/10.1016/j.ijhydene.2004.03.035. ##
[83]. Vander Wal, R. and Makiesse Nkiawete, M. (2020). Carbons as catalysts in thermo-catalytic hydrocarbon decomposition, A Review. C, 6(2), 23. doi.org/10.3390/c6020023. ##
[84]. Lee, K. K., Han, G. Y., Yoon, K. J. and Lee, B. K. (2004). Thermocatalytic hydrogen production from the methane in a fluidized bed with activated carbon catalyst. Catalysis Today, 93, 81-86. doi.org/10.1016/j.cattod.2004.06.080. ##
[85]. Mirkarimi, S. M. R., Bensaid, S., Negro, V. and Chiaramonti, D. (2023). Review of methane cracking
over carbon-based catalyst for energy and fuels. Renewable and Sustainable Energy Reviews, 187, 113747. doi.org/10.1016/j.rser.2023.113747. ##
[86]. Shen, Y., Lua, A. C. (2016). A trimodal porous carbon as an effective catalyst for hydrogen production by methane decomposition. Journal of Colloid and Interface Science, 462, 48-55. doi.org/10.1016/j.jcis.2015.09.050. ##
[87]. Serrano, D. P., Botas, J. A. and Guil-Lopez, R. (2009). H2 production from methane pyrolysis over commercial carbon catalysts: kinetic and deactivation study. International Journal of Hydrogen Energy, 34(10), 4488-4494. doi:10.1016/j.ijhydene.2008.07.079. ##
[88]. Zhang, J., Jin, L., Li, Y., Si, H., Qiu, B. and Hu, H. (2013). Hierarchical porous carbon catalyst for simultaneous preparation of hydrogen and fibrous carbon by catalytic methane decomposition. International Journal of Hydrogen Energy, 38(21), 8732-8740. doi.org/10.1016/j.ijhydene.2013.05.012. ##
[89]. Wang, J., Jin, L., Li, Y. and Hu, H. (2017). Preparation of Fe-doped carbon catalyst for methane decomposition to hydrogen. Industrial Engineering Chemistry Research, 56(39), 11021-11027. doi.org/10.1021/acs.iecr.7b02394. ##
[90]. Wang, J., Jin, L., Li, Y., Wang, M. and Hu, H. (2018). Effect of hydrogen additive on methane decomposition to hydrogen and carbon over activated carbon catalyst. International Journal of Hydrogen Energy, 43(37), 17611-17619. doi.org/10.1016/j.ijhydene.2018.07.179. ##
[91]. Al-Hassani, A. A., Abbas, H. F. and Daud, W. W. (2014). Hydrogen production via decomposition of methane over activated carbons as catalysts: Full factorial design. International Journal of Hydrogen Energy, 39(13), 7004-7014. doi.org/10.1016/j.ijhydene.2014.02.075. ##
[92]. Pham, C.Q., Siang, T.J., Kumar, P.S., Ahmad, Z., Xiao, L., Bahari, M.B., Cao, A.N.T., Rajamohan, N., Qazaq, A.S., Kumar, A. and Show, P.L., (2022). Production of hydrogen and value-added carbon materials by catalytic methane decomposition, A Review. Environmental Chemistry Letters, 20(4), 2339-2359. doi:10.1007/s10311-022-01449-2. ##
[93]. Essyed, A., Pham, X.H., Truong-Phuoc, L., Romero, T., Nhut, J.M., Duong-Viet, C., Brazier, A., Vidal, L., Dath, J.P., Dumont, M. and Pham-Huu, C., (2024). High-efficiency graphene-coated macroscopic composite for catalytic methane decomposition operated with induction heating. Chemical Engineering Journal, 485, p.150006.. doi.org/10.1016/j.cej.2024.150006. ##
[94]. Shen, Y. and Lua, A. C. (2015). Synthesis of Ni and Ni–Cu supported on carbon nanotubes for hydrogen and carbon production by catalytic decomposition of methane. Applied Catalysis B: Environmental, 164, 61-69. doi.org/10.1016/j.apcatb.2014.08.038. ##
[95]. Ellison, C., Lauterbach, J. and Smith, M. W. (2024). Activated carbon supported Ni, Fe, and bimetallic NiFe catalysts for COx-free H2 production by microwave methane pyrolysis. International Journal of Hydrogen Energy, 55, 1062-1070. doi.org/10.1016/j.ijhydene.2023.11.150. ##
[96]. Wang, Y., Zhang, Y., Zhao, S., Zhu, J., Jin, L. and Hu, H. (2020). Preparation of bimetallic catalysts Ni-Co and Ni-Fe supported on activated carbon for methane decomposition. Carbon Resources Conversion, 3, 190-197. doi.org/10.1016/j.crcon.2020.12.002. ##
[97]. Bakar, S. N. S. S. A., Alsaffar, M. A., Abdullah, B., Shaharun, M. S., Abdullah, S. and Ayodele, B. V. (2023). Catalytic performance of bimetallic Cobalt–Nickel/Graphene Oxide for Carbon Dioxide reforming of methane. ChemEngineering, 7(6), 107. doi.org/10.3390/chemengineering7060107. ##
[98]. Szymańska, M., Malaika, A., Rechnia, P., Miklaszewska, A. and Kozłowski, M. (2015). Metal/activated carbon systems as catalysts of methane decomposition reaction. Catalysis Today, 249, 94-102. doi.org/10.1016/j.cattod.2014.11.025. ##
[99]. Prasad, J. S., Dhand, V., Himabindu, V. and Anjaneyulu, Y. (2011). Production of hydrogen and carbon nanofibers through the decomposition of methane over activated carbon supported Ni catalysts. International Journal of Hydrogen Energy, 36(18), 11702-11711. doi.org/10.1016/j.ijhydene.2011.05.176. ##