Direct and Sustainable Production of Gasoline Fuel from CO2 and Hydrogen using CuO/ZSM-5 Hybrid Catalyst

Document Type : Research Paper

Authors

1 Department of Energy Engineering, Qom University of Technology, Iran

2 Department of Chemical Engineering, University of Qom, Iran

Abstract

In this article, a novel hybrid catalyst composed of CuO and ZSM-5 for the direct synthesis of gasoline hydrocarbons from CO2 and hydrogen is introduced and evaluated. The aim of this research is to improve the efficiency and stability of the catalyst in converting CO2 to value-added products and to reduce greenhouse gas emissions. Initially, the catalyst was prepared using the impregnation method, and its structural and chemical characteristics were examined using XRD, BET, and TPD-NH3 tests. The results indicate that the CuO/ZSM-5 catalyst is capable of producing gasoline hydrocarbons with high selectivity. Additionally, the effects of operational parameters such as reaction temperature and H2/CO2 ratio were investigated. In addition, the optimal operational conditions over a reaction time of 10 hours were determined to be a temperature of 320 °C and an H2/CO2 ratio of 3:1. Ultimately, under these optimal conditions, the CO2 conversion rate reached 36.2% and the selectivity for C5+ hydrocarbons reached 61.7%. Moreover, stability tests demonstrated that this catalyst could maintain its activity and selectivity over a prolonged period.

Keywords

Main Subjects


[1]. Ojelade, O. A. (2023). CO2 hydrogenation to gasoline and aromatics: mechanistic and predictive insights from DFT, DRIFTS and machine learning. ChemPlusChem, 88(9), e202300301. doi.org/10.1002/cplu.202300301.##
[2]. Martín, N., & Cirujano, F. G. (2022). Multifunctional heterogeneous catalysts for the tandem CO2 hydrogenation-Fischer Tropsch synthesis of gasoline. Journal of CO2 Utilization, 65, 102176. doi.org/10.1016/j.jcou.2022.102176.##
[3]. Gao, P., Zhang, L., Li, S., Zhou, Z., & Sun, Y. (2020). Novel heterogeneous catalysts for CO2 hydrogenation to liquid fuels. ACS Central Science, 6(10), 1657-1670. doi.org/10.1021/acscentsci.0c00976.##
[4]. Dokania, A., Ould-Chikh, S., Ramirez, A., Cerrillo, J. L., Aguilar, A., Russkikh, A., Alkhalaf, A., Hita, I., Bavykina, A., Shterk, G. & Gascon, J. (2021). Designing a multifunctional catalyst for the direct production of gasoline-range isoparaffins from CO2. JACS Au, 1(11), 1961-1974.##
[5]. Gao, P., Li, S., Bu, X., Dang, S., Liu, Z., Wang, H., Zhong, L., Qiu, M., Yang, C., Cai, J. and Wei, W. & Sun, Y. (2017). Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nature Chemistry, 9(10), 1019-1024.##
[6]. Ni, Y., Chen, Z., Fu, Y., Liu, Y., Zhu, W., & Liu, Z. (2018). Selective conversion of CO2 and H2 into aromatics. Nature Communications, 9(1), 3457.##
[7]. Zhang, X., Zhang, A., Jiang, X., Zhu, J., Liu, J., Li, J.,  Li, J., Zhang, G., Song, C. & Guo, X. (2019). Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst. Journal of CO2 Utilization, 29, 140-145. doi.org/10.1016/j.jcou.2018.12.002.##
[8]. Song, G., Li, M., Yan, P., Nawaz, M. A., & Liu, D. (2020). High conversion to aromatics via CO2-FT over a CO-reduced Cu-Fe2O3 catalyst integrated with HZSM-5. ACS Catalysis, 10(19), 11268-11279. doi.org/10.1021/acscatal.0c02722.##
[9]. Wei, J., Yao, R., Ge, Q., Xu, D., Fang, C., Zhang, J., Xu, H. & Sun, J. (2021). Precisely regulating Brønsted acid sites to promote the synthesis of light aromatics via CO2 hydrogenation. Applied Catalysis B: Environmental, 283, 119648. doi.org/10.1016/j.apcatb.2020.119648.##
[10]. Wei, J., Ge, Q., Yao, R., Wen, Z., Fang, C., Guo, L., Xu, H. & Sun, J. (2017). Directly converting CO2 into a gasoline fuel. Nature Communications, 8(1), 15174.##
[11]. Geng, S., Jiang, F., Xu, Y., & Liu, X. (2016). Iron-based Fischer–Tropsch synthesis for the efficient conversion of carbon dioxide into Isoparaffins. ChemCatChem, 8(7), 1303-1307. doi.org/10.1002/cctc.201600058.##
[12]. Dai, C., Zhao, X., Hu, B., Zhang, J., Hao, Q., Chen, H., Guo, X. & Ma, X. (2020). Hydrogenation of CO2 to aromatics over Fe–K/alkaline Al2O3 and P/ZSM-5 tandem catalysts. Industrial & Engineering Chemistry Research, 59(43), 19194-19202. doi.org/10.1021/acs.iecr.0c03598.##
[13]. Ramirez, A., Dutta Chowdhury, A., Dokania, A., Cnudde, P., Caglayan, M., Yarulina, I., Abou-Hamad, E., Gevers, L., Ould-Chikh, S., De Wispelaere, K. & Gascon, J. (2019). Effect of zeolite topology and reactor configuration on the direct conversion of CO2 to light olefins and aromatics. ACS catalysis, 9(7), 6320-6334. doi.org/10.1021/acscatal.9b01466.##
[14]. Shang, X., Liu, G., Su, X., Huang, Y., & Zhang, T. (2023). A review of the recent progress on direct heterogeneous catalytic CO2 hydrogenation to gasoline-range hydrocarbons. EES Catalysis, 1(4), 353-368. doi: 10.1039/D3EY00026E.##
[15]. Li, W., Zhang, J., Jiang, X., Mu, M., Zhang, A., Song, C., & Guo, X. (2022). Co-promoted In2O3/ZrO2 integrated with ultrathin nanosheet HZSM-5 as efficient catalysts for CO2 hydrogenation to gasoline. Industrial & Engineering Chemistry Research, 61(19), 6322-6332. doi.org/10.1021/acs.iecr.2c00460.##
[16]. Wang, X., Yang, G., Zhang, J., Song, F., Wu, Y., Zhang, T., Zhang, Q., Tsubaki, N. & Tan, Y. (2019). Macroscopic assembly style of catalysts significantly determining their efficiency for converting CO2 to gasoline. Catalysis Science & Technology, 9(19), 5401-5412. doi.org/10.1039/C9CY01470E.##
[17]. Wang, X., Zeng, C., Gong, N., Zhang, T., Wu, Y., Zhang, J., Wu, Y., Zhang, J., Song, F., Yang, G. & Tan, Y. (2021). Effective suppression of CO selectivity for CO2 hydrogenation to high-quality gasoline. Acs Catalysis, 11(3), 1528-1547. doi.org/10.1021/acscatal.0c04155.##
[18]. Guan, J., Saherwala, A., Vijayakumar, V., & Pjontek, D. (2024). CO2 Hydrogenation To methanol in a slurry reactor: catalytic performance of CuO-enhanced In2O3/ZrO2. Industrial & Engineering Chemistry Research, 63(4), 1814-1825. doi.org/10.1021/acs.iecr.3c03647.##
[19]. Liang, Y., Mao, D., Guo, X., Yu, J., Wu, G., & Ma, Z. (2021). Solvothermal preparation of CuO-ZnO-ZrO2 catalysts for methanol synthesis via CO2 hydrogenation. Journal of the Taiwan Institute of Chemical Engineers, 121, 81-91. doi.org/10.1016/j.jtice.2021.03.049.##
[20]. Spadaro, L., Santoro, M., Palella, A., & Arena, F. (2017). Hydrogen utilization in green fuel synthesis via CO2 conversion to methanol over new Cu-based catalysts. ChemEngineering, 1(2), 19. doi.org/10.3390/chemengineering1020019.##
[21]. Rajendran, K., Pandurangan, N., Vinod, C. P., Khan, T. S., Gupta, S., Haider, M. A., & Jagadeesan, D. (2021). CuO as a reactive and reusable reagent for the hydrogenation of nitroarenes. Applied Catalysis B: Environmental, 297, 120417. doi.org/10.1016/j.apcatb.2021.120417.##
[22]. Xia, Z., Li, Y., Wu, J., Huang, Y. C., Zhao, W., Lu, Y., Pan, Y., Yue, X., Wang, Y., Dong, C.L. & Zou, Y. (2022). Promoting the electrochemical hydrogenation of furfural by synergistic Cu0− Cu+ active sites. Science China Chemistry, 65(12), 2588-2595.##
[23]. Haghighi, M., Rahmani, F., Dehghani, R., Tehrani, A. M., & Miranzadeh, M. B. (2017). Photocatalytic reduction of Cr (VI) in aqueous solution over ZnO/HZSM-5 nanocomposite: optimization of ZnO loading and process conditions. Desalination and water treatment, 58, 168-180. doi.org/10.5004/dwt.2017.0145.##
[24]. Moradi, A., Khamforoush, M., Rahmani, F., & Ajamein, H. (2023). Synthesis of 0D/1D electrospun titania nanofibers incorporating CuO nanoparticles for tetracycline photodegradation and modeling and optimizationof the removal process. Materials Science and Engineering: B, 297, 116711. doi.org/10.1016/j.mseb.2023.116711.##
[25]. Albrecht, M., Rodemerck, U., Schneider, M., Bröring, M., Baabe, D., & Kondratenko, E. V. (2017). Unexpectedly efficient CO2 hydrogenation to higher hydrocarbons over non-doped Fe2O3. Applied Catalysis B: Environmental, 204, 119-126. doi.org/10.1016/j.apcatb.2016.11.017.##
[26]. Cai, D., Wang, Q., Jia, Z., Ma, Y., Cui, Y., Muhammad, U., Wang, Y., Qian, W. & Wei, F. (2016). Equilibrium analysis of methylbenzene intermediates for a methanol-to-olefins process. Catalysis Science & Technology, 6(5), 1297-1301. doi.org/10.1039/C6CY00059B.##
[27]. Ferraz, C. P., Tavares, M., Bordini, L. F., Garcia, M. A. S., de Almeida, J. M. A. R., Sousa-Aguiar, E. F., & Romano, P. N. (2024). Investigating the role of promoters (Ga, Nb, La, and Mg) on In2O3-based catalysts: Advancing on CO2 hydrogenation to C5+ hydrocarbons. Fuel, 358, 130234. doi.org/10.1016/j.fuel.2023.130234.##
[28]. Sedighi, M., & Mohammadi, M. (2020). CO2 hydrogenation to light olefins over Cu-CeO2/SAPO-34 catalysts: Product distribution and optimization. Journal of CO2 Utilization, 35, 236-244. doi.org/10.1016/j.jcou.2019.10.002.##
[29]. Ghasemi, M., Mohammadi, M., & Sedighi, M. (2020). Sustainable production of light olefins from greenhouse gas CO2 over SAPO-34 supported modified cerium oxide. Microporous and Mesoporous Materials, 297, 110029. doi.org/10.1016/j.micromeso.2020.110029.##