[1]. Ekambaram, K., & Doraisamy, M. (2017). Surface modification of PVDF nanofiltration membrane using Carboxymethylchitosan-Zinc oxide bionanocomposite for the removal of inorganic salts and humic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 525, 49-63. doi.org/10.1016/j.colsurfa.2017.04.071.##
[2]. مداینی، س. س. (1381). غشا و فرآیندهای غشایی، انتشارات طاق بستان، دانشگاه رازی کرمانشاه، چاپ اول، ##
[3]. Schneider, L. M. (2014). Hybrid polyPOSS‐amide Membranes for Nanofiltration (Bachelor’s thesis, University of Twente).##
[4]. Kang, G. D., & Cao, Y. M. (2014). Application and modification of poly (vinylidene fluoride)(PVDF) membranes–a review. Journal of Membrane Science, 463, 145-165. doi.org/10.1016/j.memsci.2014.03.055. ##
[5]. Zhu, W. P., Sun, S. P., Gao, J., Fu, F. J., & Chung, T. S. (2014). Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater. Journal of Membrane Science, 456, 117-127. doi.org/10.1016/j.memsci.2014.01.001. ##
[6]. Ahmed, S.F., Mehejabin, F., Momtahin, A., Tasannum, N., Faria, N.T., Mofijur, M., Hoang, A.T., Vo, D.V.N. and Mahlia, T.M.I., (2022). Strategies to improve membrane performance in wastewater treatment. Chemosphere, 306, 135527. doi.org/10.1016/j.chemosphere.2022.135527.##
[7]. McCloskey, B. D., Park, H. B., Ju, H., Rowe, B. W., Miller, D. J., & Freeman, B. D. (2012). A bioinspired fouling-resistant surface modification for water purification membranes. Journal of Membrane Science, 413, 82-90. doi.org/10.1016/j.memsci.2012.04.021.##
[8]. Mansoori, S., Davarnejad, R., Matsuura, T., & Ismail, A. F. (2020). Membranes based on non-synthetic (natural) polymers for wastewater treatment. Polymer Testing, 84, 106381. doi.org/10.1016/j.polymertesting.2020.106381. ##
[9]. Zhao, Y., Liao, Y., Li, C., Yin, Y., Wang, R., & Liu, Y. (2024). Constructing nanofiltration membrane on hydrophobic PVDF and PTFE substrates via reverse interfacial polymerization. Separation and Purification Technology, 334, 125944. doi.org/10.1016/j.seppur.2023.125944.##
[10]. Bandehali, S., Parvizian, F., Moghadassi, A., & Hosseini, S. M. (2020). High water permeable PEI nanofiltration membrane modified by L-cysteine functionalized POSS nanoparticles with promoted antifouling/separation performance. Separation and Purification Technology, 237, 116361. doi.org/10.1016/j.seppur.2019.116361.##
[11]. Gan, F., Jiang, S., Zhou, J., Wang, J., Wen, J., Mo, J., Han, S., Fan, L., Yi, N. and Wu, Y., (2022). Architecting dual coordination interactions in polyimide for constructing structurally controllable high-performance nanofiltration membranes. European Polymer Journal, 181, 111702. doi.org/10.1016/j.eurpolymj.2022.111702.##
[12]. Baker, R. W. (2023). Membrane technology and applications. John Wiley & Sons. ##
[13]. Hailemariam, R. H., Woo, Y. C., Damtie, M. M., Kim, B. C., Park, K. D., & Choi, J. S. (2020). Reverse osmosis membrane fabrication and modification technologies and future trends: A review. Advances in colloid and interface science, 276, 102100. doi.org/10.1016/j.cis.2019.102100.##
[14]. Koh, J. H., Kim, Y. W., Park, J. T., Min, B. R., & Kim, J. H. (2008). Nanofiltration membranes based on poly (vinylidene fluoride‐co‐chlorotrifluoroethylene)‐graft‐poly (styrene sulfonic acid). Polymers for Advanced Technologies, 19(11), 1643-1648. doi.org/10.1002/pat.1182. ##
[15]. Van der Bruggen, B., Vandecasteele, C., Van Gestel, T., Doyen, W., & Leysen, R. (2003). A review of pressure‐driven membrane processes in wastewater treatment and drinking water production. Environmental Progress, 22(1), 46-56. doi.org/10.1002/ep.670220116.##
[16]. Zhao, D., Qiu, L., Song, J., Liu, J., Wang, Z., Zhu, Y., & Liu, G. (2019). Efficiencies and mechanisms of chemical cleaning agents for nanofiltration membranes used in produced wastewater desalination. Science of The Total Environment, 652, 256-266. doi.org/10.1016/j.scitotenv.2018.10.221.##
[17]. Tul Muntha, S., Kausar, A., & Siddiq, M. (2017). Advances in polymeric nanofiltration membrane: A review. Polymer-Plastics Technology and Engineering, 56(8), 841-856. doi.org/10.1080/03602559.2016.1233562.##
[18]. Luque-Alled, J.M., Abdel-Karim, A., Alberto, M., Leaper, S., Perez-Page, M., Huang, K., Vijayaraghavan, A., El-Kalliny, A.S., Holmes, S.M. and Gorgojo, P., (2020). Polyethersulfone membranes: From ultrafiltration to nanofiltration via the incorporation of APTS functionalized-graphene oxide. Separation and Purification Technology, 230, 115836.## doi.org/10.1016/j.seppur.2019.115836.
[19]. Babu, J., & Murthy, Z. V. P. (2017). Treatment of textile dyes containing wastewaters with PES/PVA thin film composite nanofiltration membranes. Separation and Purification Technology, 183, 66-72. doi.org/10.1016/j.seppur.2017.04.002.##
[20]. Peydayesh, M., Mohammadi, T., & Nikouzad, S. K. (2020). A positively charged composite loose nanofiltration membrane for water purification from heavy metals. Journal of Membrane Science, 611, 118205. doi.org/10.1016/j.memsci.2020.118205. ##
[21]. Dadari, S., Rahimi, M., & Zinadini, S. (2022). Removal of heavy metal from aqueous medium using novel high-performance, antifouling, and antibacterial nanofiltration polyethersulfone membrane modified with green synthesized Ni-doped Al2O3. Korean Journal of Chemical Engineering, 39(9), 2424-2443.##
[22]. Bai, L., Wu, H., Ding, J., Ding, A., Zhang, X., Ren, N., Li, G. and Liang, H., 2020. Cellulose nanocrystal-blended polyethersulfone membranes for enhanced removal of natural organic matter and alleviation of membrane fouling. Chemical Engineering Journal, 382, p.122919. doi.org/10.1016/j.cej.2019.122919.##
[23]. Liu, B. L., Ooi, C. W., Ng, I. S., Show, P. L., Lin, K. J., & Chang, Y. K. (2020). Effective purification of lysozyme from chicken egg white by tris (hydroxymethyl) aminomethane affinity nanofiber membrane. Food Chemistry, 327, 127038. doi.org/10.1016/j.foodchem.2020.127038.##
[24]. Khot, S. S., Anbhule, P. V., Desai, U. V., & Wadgaonkar, P. P. (2018). Tris-hydroxymethylaminomethane (THAM): An efficient organocatalyst in diversity-oriented and environmentally benign synthesis of spirochromenes. Comptes Rendus Chimie, 21(9), 814-821. doi.org/10.1016/j.crci.2018.05.005.##
[25]. Wang, J., Yang, L., Xie, J., Wang, Y., & Wang, T. J. (2020). Surface amination of silica nanoparticles using tris (hydroxymethyl) aminomethane. Industrial & Engineering Chemistry Research, 59(49), 21383-21392. doi.org/10.1021/acs.iecr.0c04346.##
[26]. Goh, P. S., Ng, B. C., Lau, W. J., & Ismail, A. F. (2015). Inorganic nanomaterials in polymeric ultrafiltration membranes for water treatment. Separation & Purification Reviews, 44(3), 216-249. doi.org/10.1080/15422119.
2014.926274.##
[27]. Puerari, R.C., Gonçalves, R.A., Justino, N.M., Vicentini, D.S. and Matias, W.G., (2020). The influence of amine-functionalized SiO2 nanostructures upon nanofiltration membranes. Environmental Nanotechnology, Mon itoring & Management, 13, p.100287. doi.org/10.1016/j.enmm.2020.100287.##
[28]. Bagheripour, E., Moghadassi, A. R., Parvizian, F., Hosseini, S. M., & Van der Bruggen, B. (2019). Tailoring the separation performance and fouling reduction of PES based nanofiltration membrane by using a PVA/Fe3O4 coating layer. Chemical Engineering Research and Design, 144, 418-428. doi.org/10.1016/j.cherd.2019.02.028.##
[29]. Wei, S., Chen, Y., Hu, X., Wang, C., Huang, X., Liu, D., & Zhang, Y. (2020). Monovalent/Divalent salts separation via thin film nanocomposite nanofiltration membrane containing aminated TiO2 nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 112, 169-179. doi.org/10.1016/j.jtice.2020.06.014.##
[30]. Gholami, A., Moghadassi, A. R., Hosseini, S. M., Shabani, S., & Gholami, F. (2014). Preparation and characterization of polyvinyl chloride based nanocomposite nanofiltration-membrane modified by iron oxide nanoparticles for lead removal from water. Journal of Industrial and Engineering Chemistry, 20(4), 1517-1522. doi.org/10.1016/j.jiec.2013.07.041.##
[31]. Liu, X., Chen, Y., Deng, Z., & Yang, Y. (2020). High-performance nanofiltration membrane for dyes removal: Blending Fe3O4-HNTs nanocomposites into poly (vinylidene fluoride) matrix. Journal of Dispersion Science and Technology, 42(1), 93-102. doi.org/10.1080/01932691.2019.1662308.##
[32]. Hosseini, S. M., Afshari, M., Fazlali, A. R., Farahani, S. K., Bandehali, S., Van der Bruggen, B., & Bagheripour, E. (2019). Mixed matrix PES-based nanofiltration membrane decorated by (Fe3O4–polyvinylpyrrolidone) composite nanoparticles with intensified antifouling and separation characteristics. Chemical Engineering Research and Design, 147, 390-398. doi.org/10.1016/j.cherd.2019.05.025.##
[33]. Hosseini, S. M., Afshari, M., Fazlali, A. R., Farahani, S. K., Bandehali, S., Van der Bruggen, B., & Bagheripour, E. (2019). Mixed matrix PES-based nanofiltration membrane decorated by (Fe3O4–polyvinylpyrrolidone) composite nanoparticles with intensified antifouling and separation characteristics. Chemical Engineering Research and Design, 147, 390-398. doi.org/10.1016/j.cherd.2019.05.025. ##
[34]. Alimohammadi, E., Kaveh, K., & Ali, Z. M. (2022). Preparation of triazine-based functionalized HY zeolite and its application in the green synthesis of tetrahydrobenzo [b] pyran and 1, 4-dihydropyrano [2, 3-c] pyrazole derivatives as a novel mesoporous recyclable nanocatalyst. Journal of the Iranian Chemical Society, 19(12), 4721-4734. ##
[35]. Afsharnadery, F., Khosravi, K., & Zolfigol, M. A. (2021). A novel magnetically recyclable semi‐dendrimer catalyst‐based ethanolpyridole supported on ferrite nanoparticles (HNPs@ Py) for the synthesis of biscoumarin and dihydropyrano [3, 2‐c] chromene derivatives. Applied Organometallic Chemistry, 35(8), e6297. doi.org/10.1002/aoc.6297. ##
[36]. Hoseinpour, V., Ghaee, A., Vatanpour, V., & Ghaemi, N. (2018). Surface modification of PES membrane via aminolysis and immobilization of carboxymethylcellulose and sulphated carboxymethylcellulose for hemodialysis. Carbohydrate polymers, 188, 37-47. doi.org/10.1016/j.carbpol.2018.01.106. ##
[37]. Wang, L., Cai, Y., Jing, Y., Zhu, B., Zhu, L., & Xu, Y. (2014). Route to hemocompatible polyethersulfone membranes via surface aminolysis and heparinization. Journal of Colloid and Interface Science, 422, 38-44. doi.org/10.1016/j.jcis.2014.02.005. ##
[38]. Qin, A., Li, X., Zhao, X., Liu, D., & He, C. (2015). Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface. ACS Applied Materials & Interfaces, 7(16), 8427-8436. doi.org/10.1021/acsami.5b00978.##
[39]. Song, W., Li, Z., Li, Y., You, H., Qi, P., Liu, F., & Loy, D. A. (2018). Facile sol-gel coating process for anti-biofouling modification of poly (vinylidene fluoride) microfiltration membrane based on novel zwitterionic organosilica. Journal of Membrane Science, 550, 266-277. doi.org/10.1016/j.memsci.2017.12.076.##
[40]. Zhu, J., Hou, J., Zhang, Y., Tian, M., He, T., Liu, J., & Chen, V. (2018). Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. Journal of Membrane Science, 550, 173-197. doi.org/10.1016/j.memsci.2017.12.071.
[41]. Özdemir, S., Uzal, N., & Gökçek, Ö. B. (2021). Investigation of the treatability of pre‐coagulated slaughterhouse wastewater using dead‐end filtration. Journal of Chemical Technology & Biotechnology, 96(7), 1927-1935. doi.org/10.1002/jctb.6716. ##
[42]. Zhan, Z. M., Tang, Y. J., Zhu, K. K., Xue, S. M., Ji, C. H., Tang, C. Y., & Xu, Z. L. (2021). Coupling heat curing and surface modification for the fabrication of high permselectivity polyamide nanofiltration membranes. Journal of Membrane Science, 623, 119073. doi.org/10.1016/j.memsci.2021.119073.##
[43]. Belfer, S., Fainchtain, R., Purinson, Y., & Kedem, O. (2000). Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled. Journal of Membrane Science, 172(1-2), 113-124. doi.org/10.1016/S0376-7388(00)00316-1. ##
[44]. Qin, A., Li, X., Zhao, X., Liu, D., & He, C. (2015). Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface. ACS Applied Materials & Interfaces, 7(16), 8427-8436. doi.org/10.1021/acsami.5b00978.##
[45]. Emadzadeh, D., Ghanbari, M., Lau, W.J., Rahbari-Sisakht, M., Rana, D., Matsuura, T., Kruczek, B. and Ismail, A.F., (2017). Surface modification of thin film composite membrane by nanoporous titanate nanoparticles for improving combined organic and inorganic antifouling properties. Materials Science and Engineering: C, 75, pp.463-470. doi.org/10.1016/j.msec.2017.02.079.##
[46]. Koulivand, H., Shahbazi, A., & Vatanpour, V. (2019). Fabrication and characterization of a high-flux and antifouling polyethersulfone membrane for dye removal by embedding Fe3O4-MDA nanoparticles. Chemical Engineering Research and Design, 145, 64-75. doi.org/10.1016/j.cherd.2019.03.003.##
[47]. Shao, L., Wang, Z. X., Zhang, Y. L., Jiang, Z. X., & Liu, Y. Y. (2014). A facile strategy to enhance PVDF ultrafiltration membrane performance via self-polymerized polydopamine followed by hydrolysis of ammonium fluotitanate. Journal of Membrane Science, 461, 10-21. doi.org/10.1016/j.memsci.2014.03.006. ##
[48]. Gao, Y., Zhao, S., Qiao, Z., Zhou, Y., Song, B., Wang, Z., & Wang, J. (2018). Reverse osmosis membranes with guanidine and amine enriched surface for biofouling and organic fouling control. Desalination, 430, 74-85. doi: 10.1016/j.desal.2017.12.055.##
[49]. Salimi, A., & Yousefi, A. A. (2003). Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polymer Testing, 22(6), 699-704. doi.org/10.1016/S0142-9418(03)00003-5.##
[50]. Tomar, S., Shahadat, M., Ali, S. W., Joshi, M., & Butola, B. S. (2023). Treatment of textile‐wastewater using green technologies. Green Chemistry for Sustainable Water Purification, 129-156. doi.org/10.1002/9781119852322.ch6.##
[51]. Zhu, W. P., Sun, S. P., Gao, J., Fu, F. J., & Chung, T. S. (2014). Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater. Journal of Membrane Science, 456, 117-127. doi.org/10.1016/j.memsci.2014.01.001.##
[52]. Sharahi, F. J., & Shahbazi, A. (2017). Melamine-based dendrimer amine-modified magnetic nanoparticles as an efficient Pb (II) adsorbent for wastewater treatment: Adsorption optimization by response surface methodology. Chemosphere, 189, 291-300. doi.org/10.1016/j.chemosphere.2017.09.050.##
[53]. Zhu, W. P., Sun, S. P., Gao, J., Fu, F. J., & Chung, T. S. (2014). Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater. Journal of Membrane Science, 456, 117-127. doi.org/10.1016/j.memsci.2014.01.001.##
[54]. Wu, S. P., Dai, X. Z., Kan, J. R., Shilong, F. D., & Zhu, M. Y. (2017). Fabrication of carboxymethyl chitosan–hemicellulose resin for adsorptive removal of heavy metals from wastewater. Chinese Chemical Letters, 28(3), 625-632. doi.org/10.1016/j.cclet.2016.11.015.##