Fabrication and Modification of Modified Polyether-Sulfone Nanofiltration Membranes Using Synthesized Nanoparticles by Tris (Hydroxymethyl)Aminomethane in Order to Improve Separation Efficiency and Anti-Fouling Properties

Document Type : Research Paper

Authors

1 Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran

2 Department of Chemistry, Faculty of Science, Arak University, Arak, Iran

Abstract

In this research, nanofiltration membranes based on polyether-sulfone were made by immersion in a non-solvent bath, then a surface modification using synthesized nanoparticles was used to improve the hydrophilicity of membranes surface. Moreover, the effect of surface modification on separation and antifouling properties was evaluated. In addition, FTIR and FESEM analyzes were used to identify nanoparticles. ATR, SEM and AFM analyses have also been used to investigate the morphology of the primary and modified membranes. Furthermore, surface contact angle, antifouling properties, flux, salt rejection and lead removal have also been performed to evaluate the performance of prepared membranes. According to the results, the hydrophilicity of modified membranes increased and then the salt separation rate in the modified membranes has significantly improved. Also, this value has increased from 52% related to the primary membrane to 81% related to the membrane. In addition, this increase is due to the presence of nanoparticles on the membrane surface as active sites to remove ions. On the other hand, creating a dense layer on the membrane surface and reducing the pore size of the membrane due to the modification can be considered as another factor to increase the separation. Furthermore, the reduction of water contact angle on the surface of modified membranes also indicates the increase in hydrophilicity after modification. The membrane provided the lowest contact angle, highest rejection of salt and lead metal along with an acceptable flux. In addition, the significant increase in the flux recovery ratio also indicates the improvement of the antifouling properties after the membrane modification. Ultimately, according to the obtained results from this research, membranes modified by synthesized nanoparticles with tris (hydroxymethyl) amino methane can be effectively used in the membrane separation process.

Keywords

Main Subjects


[1]. Ekambaram, K., & Doraisamy, M. (2017). Surface modification of PVDF nanofiltration membrane using Carboxymethylchitosan-Zinc oxide bionanocomposite for the removal of inorganic salts and humic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 525, 49-63. doi.org/10.1016/j.colsurfa.2017.04.071.##
[2]. مداینی، س. س. (1381). غشا و فرآیندهای غشایی، انتشارات طاق بستان، دانشگاه رازی کرمانشاه، چاپ اول، ##
[3]. Schneider, L. M. (2014). Hybrid polyPOSS‐amide Membranes for Nanofiltration (Bachelor’s thesis, University of Twente).##
[4]. Kang, G. D., & Cao, Y. M. (2014). Application and modification of poly (vinylidene fluoride)(PVDF) membranes–a review. Journal of Membrane Science, 463, 145-165. doi.org/10.1016/j.memsci.2014.03.055. ##
[5]. Zhu, W. P., Sun, S. P., Gao, J., Fu, F. J., & Chung, T. S. (2014). Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater. Journal of Membrane Science, 456, 117-127. doi.org/10.1016/j.memsci.2014.01.001. ##
[6]. Ahmed, S.F., Mehejabin, F., Momtahin, A., Tasannum, N., Faria, N.T., Mofijur, M., Hoang, A.T., Vo, D.V.N. and Mahlia, T.M.I., (2022). Strategies to improve membrane performance in wastewater treatment. Chemosphere, 306, 135527. doi.org/10.1016/j.chemosphere.2022.135527.##
[7]. McCloskey, B. D., Park, H. B., Ju, H., Rowe, B. W., Miller, D. J., & Freeman, B. D. (2012). A bioinspired fouling-resistant surface modification for water purification membranes. Journal of Membrane Science, 413, 82-90. doi.org/10.1016/j.memsci.2012.04.021.##
[8]. Mansoori, S., Davarnejad, R., Matsuura, T., & Ismail, A. F. (2020). Membranes based on non-synthetic (natural) polymers for wastewater treatment. Polymer Testing, 84, 106381. doi.org/10.1016/j.polymertesting.2020.106381. ##
[9]. Zhao, Y., Liao, Y., Li, C., Yin, Y., Wang, R., & Liu, Y. (2024). Constructing nanofiltration membrane on hydrophobic PVDF and PTFE substrates via reverse interfacial polymerization. Separation and Purification Technology, 334, 125944. doi.org/10.1016/j.seppur.2023.125944.##
[10]. Bandehali, S., Parvizian, F., Moghadassi, A., & Hosseini, S. M. (2020). High water permeable PEI nanofiltration membrane modified by L-cysteine functionalized POSS nanoparticles with promoted antifouling/separation performance. Separation and Purification Technology, 237, 116361. doi.org/10.1016/j.seppur.2019.116361.##
[11]. Gan, F., Jiang, S., Zhou, J., Wang, J., Wen, J., Mo, J., Han, S., Fan, L., Yi, N. and Wu, Y., (2022). Architecting dual coordination interactions in polyimide for constructing structurally controllable high-performance nanofiltration membranes. European Polymer Journal, 181, 111702. doi.org/10.1016/j.eurpolymj.2022.111702.##
[12]. Baker, R. W. (2023). Membrane technology and applications. John Wiley & Sons. ##
[13]. Hailemariam, R. H., Woo, Y. C., Damtie, M. M., Kim, B. C., Park, K. D., & Choi, J. S. (2020). Reverse osmosis membrane fabrication and modification technologies and future trends: A review. Advances in colloid and interface science, 276, 102100. doi.org/10.1016/j.cis.2019.102100.##
[14]. Koh, J. H., Kim, Y. W., Park, J. T., Min, B. R., & Kim, J. H. (2008). Nanofiltration membranes based on poly (vinylidene fluoride‐co‐chlorotrifluoroethylene)‐graft‐poly (styrene sulfonic acid). Polymers for Advanced Technologies, 19(11), 1643-1648. doi.org/10.1002/pat.1182. ##
[15]. Van der Bruggen, B., Vandecasteele, C., Van Gestel, T., Doyen, W., & Leysen, R. (2003). A review of pressure‐driven membrane processes in wastewater treatment and drinking water production. Environmental Progress, 22(1), 46-56. doi.org/10.1002/ep.670220116.##
[16]. Zhao, D., Qiu, L., Song, J., Liu, J., Wang, Z., Zhu, Y., & Liu, G. (2019). Efficiencies and mechanisms of chemical cleaning agents for nanofiltration membranes used in produced wastewater desalination. Science of The Total Environment, 652, 256-266. doi.org/10.1016/j.scitotenv.2018.10.221.##
[17]. Tul Muntha, S., Kausar, A., & Siddiq, M. (2017). Advances in polymeric nanofiltration membrane: A review. Polymer-Plastics Technology and Engineering, 56(8), 841-856. doi.org/10.1080/03602559.2016.1233562.##
[18]. Luque-Alled, J.M., Abdel-Karim, A., Alberto, M., Leaper, S., Perez-Page, M., Huang, K., Vijayaraghavan, A., El-Kalliny, A.S., Holmes, S.M. and Gorgojo, P., (2020). Polyethersulfone membranes: From ultrafiltration to nanofiltration via the incorporation of APTS functionalized-graphene oxide. Separation and Purification Technology, 230, 115836.## doi.org/10.1016/j.seppur.2019.115836.
[19]. Babu, J., & Murthy, Z. V. P. (2017). Treatment of textile dyes containing wastewaters with PES/PVA thin film composite nanofiltration membranes. Separation and Purification Technology, 183, 66-72. doi.org/10.1016/j.seppur.2017.04.002.##
[20]. Peydayesh, M., Mohammadi, T., & Nikouzad, S. K. (2020). A positively charged composite loose nanofiltration membrane for water purification from heavy metals. Journal of Membrane Science, 611, 118205. doi.org/10.1016/j.memsci.2020.118205. ##
[21]. Dadari, S., Rahimi, M., & Zinadini, S. (2022). Removal of heavy metal from aqueous medium using novel high-performance, antifouling, and antibacterial nanofiltration polyethersulfone membrane modified with green synthesized Ni-doped Al2O3. Korean Journal of Chemical Engineering, 39(9), 2424-2443.##
[22]. Bai, L., Wu, H., Ding, J., Ding, A., Zhang, X., Ren, N., Li, G. and Liang, H., 2020. Cellulose nanocrystal-blended polyethersulfone membranes for enhanced removal of natural organic matter and alleviation of membrane fouling. Chemical Engineering Journal, 382, p.122919. doi.org/10.1016/j.cej.2019.122919.##
[23]. Liu, B. L., Ooi, C. W., Ng, I. S., Show, P. L., Lin, K. J., & Chang, Y. K. (2020). Effective purification of lysozyme from chicken egg white by tris (hydroxymethyl) aminomethane affinity nanofiber membrane. Food Chemistry, 327, 127038. doi.org/10.1016/j.foodchem.2020.127038.##
[24]. Khot, S. S., Anbhule, P. V., Desai, U. V., & Wadgaonkar, P. P. (2018). Tris-hydroxymethylaminomethane (THAM): An efficient organocatalyst in diversity-oriented and environmentally benign synthesis of spirochromenes. Comptes Rendus Chimie, 21(9), 814-821. doi.org/10.1016/j.crci.2018.05.005.##
[25]. Wang, J., Yang, L., Xie, J., Wang, Y., & Wang, T. J. (2020). Surface amination of silica nanoparticles using tris (hydroxymethyl) aminomethane. Industrial & Engineering Chemistry Research, 59(49), 21383-21392. doi.org/10.1021/acs.iecr.0c04346.##
[26]. Goh, P. S., Ng, B. C., Lau, W. J., & Ismail, A. F. (2015). Inorganic nanomaterials in polymeric ultrafiltration membranes for water treatment. Separation & Purification Reviews, 44(3), 216-249. doi.org/10.1080/15422119.
2014.926274.##
[27]. Puerari, R.C., Gonçalves, R.A., Justino, N.M., Vicentini, D.S. and Matias, W.G., (2020). The influence of amine-functionalized SiO2 nanostructures upon nanofiltration membranes. Environmental Nanotechnology, Mon itoring & Management, 13, p.100287. doi.org/10.1016/j.enmm.2020.100287.##
[28]. Bagheripour, E., Moghadassi, A. R., Parvizian, F., Hosseini, S. M., & Van der Bruggen, B. (2019). Tailoring the separation performance and fouling reduction of PES based nanofiltration membrane by using a PVA/Fe3O4 coating layer. Chemical Engineering Research and Design, 144, 418-428. doi.org/10.1016/j.cherd.2019.02.028.##
[29]. Wei, S., Chen, Y., Hu, X., Wang, C., Huang, X., Liu, D., & Zhang, Y. (2020). Monovalent/Divalent salts separation via thin film nanocomposite nanofiltration membrane containing aminated TiO2 nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 112, 169-179. doi.org/10.1016/j.jtice.2020.06.014.##
[30]. Gholami, A., Moghadassi, A. R., Hosseini, S. M., Shabani, S., & Gholami, F. (2014). Preparation and characterization of polyvinyl chloride based nanocomposite nanofiltration-membrane modified by iron oxide nanoparticles for lead removal from water. Journal of Industrial and Engineering Chemistry, 20(4), 1517-1522. doi.org/10.1016/j.jiec.2013.07.041.##
[31]. Liu, X., Chen, Y., Deng, Z., & Yang, Y. (2020). High-performance nanofiltration membrane for dyes removal: Blending Fe3O4-HNTs nanocomposites into poly (vinylidene fluoride) matrix. Journal of Dispersion Science and Technology, 42(1), 93-102. doi.org/10.1080/01932691.2019.1662308.##
[32]. Hosseini, S. M., Afshari, M., Fazlali, A. R., Farahani, S. K., Bandehali, S., Van der Bruggen, B., & Bagheripour, E. (2019). Mixed matrix PES-based nanofiltration membrane decorated by (Fe3O4–polyvinylpyrrolidone) composite nanoparticles with intensified antifouling and separation characteristics. Chemical Engineering Research and Design, 147, 390-398. doi.org/10.1016/j.cherd.2019.05.025.##
[33]. Hosseini, S. M., Afshari, M., Fazlali, A. R., Farahani, S. K., Bandehali, S., Van der Bruggen, B., & Bagheripour, E. (2019). Mixed matrix PES-based nanofiltration membrane decorated by (Fe3O4–polyvinylpyrrolidone) composite nanoparticles with intensified antifouling and separation characteristics. Chemical Engineering Research and Design, 147, 390-398. doi.org/10.1016/j.cherd.2019.05.025. ##
[34]. Alimohammadi, E., Kaveh, K., & Ali, Z. M. (2022). Preparation of triazine-based functionalized HY zeolite and its application in the green synthesis of tetrahydrobenzo [b] pyran and 1, 4-dihydropyrano [2, 3-c] pyrazole derivatives as a novel mesoporous recyclable nanocatalyst. Journal of the Iranian Chemical Society, 19(12), 4721-4734. ##
[35]. Afsharnadery, F., Khosravi, K., & Zolfigol, M. A. (2021). A novel magnetically recyclable semi‐dendrimer catalyst‐based ethanolpyridole supported on ferrite nanoparticles (HNPs@ Py) for the synthesis of biscoumarin and dihydropyrano [3, 2‐c] chromene derivatives. Applied Organometallic Chemistry, 35(8), e6297. doi.org/10.1002/aoc.6297. ##
[36]. Hoseinpour, V., Ghaee, A., Vatanpour, V., & Ghaemi, N. (2018). Surface modification of PES membrane via aminolysis and immobilization of carboxymethylcellulose and sulphated carboxymethylcellulose for hemodialysis. Carbohydrate polymers, 188, 37-47. doi.org/10.1016/j.carbpol.2018.01.106. ##
[37]. Wang, L., Cai, Y., Jing, Y., Zhu, B., Zhu, L., & Xu, Y. (2014). Route to hemocompatible polyethersulfone membranes via surface aminolysis and heparinization. Journal of Colloid and Interface Science, 422, 38-44. doi.org/10.1016/j.jcis.2014.02.005. ##
[38]. Qin, A., Li, X., Zhao, X., Liu, D., & He, C. (2015). Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface. ACS Applied Materials & Interfaces, 7(16), 8427-8436. doi.org/10.1021/acsami.5b00978.##
[39]. Song, W., Li, Z., Li, Y., You, H., Qi, P., Liu, F., & Loy, D. A. (2018). Facile sol-gel coating process for anti-biofouling modification of poly (vinylidene fluoride) microfiltration membrane based on novel zwitterionic organosilica. Journal of Membrane Science, 550, 266-277. doi.org/10.1016/j.memsci.2017.12.076.##
[40]. Zhu, J., Hou, J., Zhang, Y., Tian, M., He, T., Liu, J., & Chen, V. (2018). Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. Journal of Membrane Science, 550, 173-197. doi.org/10.1016/j.memsci.2017.12.071. 
[41]. Özdemir, S., Uzal, N., & Gökçek, Ö. B. (2021). Investigation of the treatability of pre‐coagulated slaughterhouse wastewater using dead‐end filtration. Journal of Chemical Technology & Biotechnology, 96(7), 1927-1935. doi.org/10.1002/jctb.6716. ##
[42]. Zhan, Z. M., Tang, Y. J., Zhu, K. K., Xue, S. M., Ji, C. H., Tang, C. Y., & Xu, Z. L. (2021). Coupling heat curing and surface modification for the fabrication of high permselectivity polyamide nanofiltration membranes. Journal of Membrane Science, 623, 119073. doi.org/10.1016/j.memsci.2021.119073.##
[43]. Belfer, S., Fainchtain, R., Purinson, Y., & Kedem, O. (2000). Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled. Journal of Membrane Science, 172(1-2), 113-124. doi.org/10.1016/S0376-7388(00)00316-1. ##
[44]. Qin, A., Li, X., Zhao, X., Liu, D., & He, C. (2015). Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface. ACS Applied Materials & Interfaces, 7(16), 8427-8436. doi.org/10.1021/acsami.5b00978.##
[45]. Emadzadeh, D., Ghanbari, M., Lau, W.J., Rahbari-Sisakht, M., Rana, D., Matsuura, T., Kruczek, B. and Ismail, A.F., (2017). Surface modification of thin film composite membrane by nanoporous titanate nanoparticles for improving combined organic and inorganic antifouling properties. Materials Science and Engineering: C, 75, pp.463-470. doi.org/10.1016/j.msec.2017.02.079.##
[46]. Koulivand, H., Shahbazi, A., & Vatanpour, V. (2019). Fabrication and characterization of a high-flux and antifouling polyethersulfone membrane for dye removal by embedding Fe3O4-MDA nanoparticles. Chemical Engineering Research and Design, 145, 64-75. doi.org/10.1016/j.cherd.2019.03.003.##
[47]. Shao, L., Wang, Z. X., Zhang, Y. L., Jiang, Z. X., & Liu, Y. Y. (2014). A facile strategy to enhance PVDF ultrafiltration membrane performance via self-polymerized polydopamine followed by hydrolysis of ammonium fluotitanate. Journal of Membrane Science, 461, 10-21. doi.org/10.1016/j.memsci.2014.03.006. ##
[48]. Gao, Y., Zhao, S., Qiao, Z., Zhou, Y., Song, B., Wang, Z., & Wang, J. (2018). Reverse osmosis membranes with guanidine and amine enriched surface for biofouling and organic fouling control. Desalination, 430, 74-85. doi: 10.1016/j.desal.2017.12.055.##
[49]. Salimi, A., & Yousefi, A. A. (2003). Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polymer Testing, 22(6), 699-704. doi.org/10.1016/S0142-9418(03)00003-5.##
[50]. Tomar, S., Shahadat, M., Ali, S. W., Joshi, M., & Butola, B. S. (2023). Treatment of textile‐wastewater using green technologies. Green Chemistry for Sustainable Water Purification, 129-156. doi.org/10.1002/9781119852322.ch6.##
[51]. Zhu, W. P., Sun, S. P., Gao, J., Fu, F. J., & Chung, T. S. (2014). Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater. Journal of Membrane Science, 456, 117-127. doi.org/10.1016/j.memsci.2014.01.001.##
[52]. Sharahi, F. J., & Shahbazi, A. (2017). Melamine-based dendrimer amine-modified magnetic nanoparticles as an efficient Pb (II) adsorbent for wastewater treatment: Adsorption optimization by response surface methodology. Chemosphere, 189, 291-300. doi.org/10.1016/j.chemosphere.2017.09.050.##
[53]. Zhu, W. P., Sun, S. P., Gao, J., Fu, F. J., & Chung, T. S. (2014). Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater. Journal of Membrane Science, 456, 117-127. doi.org/10.1016/j.memsci.2014.01.001.##
[54]. Wu, S. P., Dai, X. Z., Kan, J. R., Shilong, F. D., & Zhu, M. Y. (2017). Fabrication of carboxymethyl chitosan–hemicellulose resin for adsorptive removal of heavy metals from wastewater. Chinese Chemical Letters, 28(3), 625-632. doi.org/10.1016/j.cclet.2016.11.015.##