[1] . Kumar, A., Savari, S., Jamison, D. E., & Whitfill, D. L. (2011, April). Lost circulation control and wellbore strengthening: looking beyond particle size distribution. In AADE national technical conference and exhibition, Houston, Texas, USA (pp. 12-14).##
[2]. Feng, Y., Jones, J. F., & Gray, K. E. (2016). A review on fracture-initiation and-propagation pressures for lost circulation and wellbore strengthening. SPE Drilling & Completion, 31(02), 134-144. doi.org/10.2118/181747-PA. .##
[3]. Power, D., Ivan, C. D., & Brooks, S. W. (2003, April). The top 10 lost circulation concerns in deepwater drilling. In SPE Latin America and Caribbean Petroleum Engineering Conference (pp. SPE-81133). SPE. doi.org/10.2118/81133-MS. .##
[4]. Nayberg, T. M. (1987). Laboratory study of lost circulation materials for use in both oil-based and water-based drilling muds. SPE Drilling Engineering, 2(03), 229-236. doi.org/10.2118/14723-PA . .##
[5]. Savari, S., Kumar, A., Whitfill, D. L., & Jamison, D. E. (2011, June). Improved lost circulation treatment design and testing techniques minimize formation damage. In SPE European Formation Damage Conference and Exhibition (pp. SPE-143603). SPE. doi.org/10.2118/143603-MS . .##
[6]. Nasiri, A., Ghaffarkhah, A., Moraveji, M. K., Gharbanian, A., & Valizadeh, M. (2017). Experimental and field test analysis of different loss control materials for combating lost circulation in bentonite mud. Journal of Natural Gas Science and Engineering, 44, 1-8. doi.org/10.1016/j.jngse.2017.04.004. .##
[7]. Corley, W. T., & Dorsey, D. L. (1983). Lost circulation material (No. US 4422948). .##
[8] . Lummus, J. L., & Randall, B. V. (1968). Lost Circulation Material. .##
[9]. Goud, M. C., & Joseph, G. (2006). Drilling fluid additives and engineering to improve formation integrity. In SPE/IADC Indian Drilling Technology Conference and Exhibition (pp. SPE-104002). SPE. doi.org/10.2118/104002-MS. .##
[10]. Mokhtari, M., & Ozbayoglu, E. M. (2010, June). Laboratory investigation on gelation behavior of xanthan crosslinked with borate intended to combat lost circulation. In SPE International Production and Operations Conference and Exhibition (pp. SPE-136094). SPE. doi.org/10.2118/136094-MS. .##
[11]. Dick, M. A., Heinz, T. J., Svoboda, C. F., & Aston, M. (2000). Optimizing the selection of bridging particles for reservoir drilling fluids. In SPE International Conference and Exhibition on Formation Damage Control (pp. SPE-58793). SPE. doi.org/10.2118/58793-MS. .##
[12]. Vickers, S., Cowie, M., Jones, T., & Twynam, A. J. (2006). A new methodology that surpasses current bridging theories to efficiently seal a varied pore throat distribution as found in natural reservoir formations. Wiertnictwo, Nafta, Gaz, 23(1), 501-515. .##
[13]. Xu, C., Kang, Y., Chen, F., & You, Z. (2017). Analytical model of plugging zone strength for drill-in fluid loss control and formation damage prevention in fractured tight reservoir. Journal of Petroleum Science and Engineering, 149, 686-700. doi.org/10.1016/j.petrol.2016.10.069. .##
[14]. Alsaba, M., Al Dushaishi, M. F., Nygaard, R., Nes, O. M., & Saasen, A. (2017). Updated criterion to select particle size distribution of lost circulation materials for an effective fracture sealing. Journal of Petroleum Science and Engineering, 149, 641-648. doi.org/10.1016/j.petrol.2016.10.027. .##
[15]. Cremeans, K. S., & Cremeans, J. G. (2003). U.S. Patent No. 6,630,429. Washington, DC: U.S. Patent and Trademark Office. .##
[16]. MacQuoid, M., & Skodack, D. (2004). U.S. Patent Application No. 10/626,503. .##