Experimental Investigation of Parameters Affecting Oil-Water Interfacial Tension for Smart Water Flooding into Asphaltene-Bearing Oil

Document Type : Research Paper

Authors

1 Department of Petroleum Engineering, Petroleum University of Technology, Ahvaz, Iran

2 Department of Production Operations, Maroun Oil and Gas Production Company, Ahvaz, Iran

10.22078/pr.2024.5422.3412

Abstract

Asphaltenes cause many problems in the upstream and downstream sectors of the petroleum industry. Also, one of the main production challenges is water production along with oil in reservoirs at the second stage of their production with active aquifers or under water flooding. In such conditions, the formation of water-in-oil emulsion is inevitable and asphaltene acts as an emulsion stabilizer. As a result, most of the articles have only dealt with the problems caused by asphaltene precipitation and deposition during water-oil emulsion formation. In contrast, few studies have focused on the fluid-fluid interaction of water and oil during water injection into asphaltene-bearing oil reservoirs. Accordingly, this research addresses the laboratory study of interfacial tension between asphaltene-bearing oil and water during smart water injection. In order to achieve this goal, fluid-fluid interactions were carefully examined and then the effects of various parameters on the interfacial tension of smart water and oil containing asphaltene were investigated such as salinity and ionic composition of water and type of salt, the role of time, the effect of oil-model, type of asphaltene and the presence or absence of naphthenic acid. In addition, the results showed that the lowest interfacial tension for water containing magnesium chloride, calcium chloride and sodium sulfate salts was obtained at low salinities. At all salinities except for twice-diluted seawater, the interfacial tension after ten days showed greater values than for oil and water in fresh contact. Ultimately, with the presence of naphthenic acid in the oil bulk phase, a greater decrease in interfacial tension was observed compared to the case where only asphaltene is present in the bulk. Also, the lowest interfacial tension was observed for seawater salinity. Furthermore, the findings of this study will enrich the literature of enhanced oil recovery in the field studies on asphaltene and smart water.

Keywords

Main Subjects


[1]. Lemos B., Winter A., Blini E. K., Kim N. R., and Almeida R. V. (2024). Laboratory data for oil recovery by injecting low-salinity water into sandstone from Brazilian Campos Basin reservoir, Journal of Petroleum Science and Technology, 14(2), 25–37. doi: 10.22078/jpst.2025.5516.1949.##
[2]. Jadhunandan, P. P., & Morrow, N. R. (1991). Spontaneous imbibition of water by crude oil/brine/rock systems. In Situ;(United States), 15(4). ##
[3]. Morrow, N., & Buckley, J. (2011). Improved oil recovery by low-salinity waterflooding. Journal of petroleum Technology, 63(05), 106-112. doi.org/10.2118/129421-JPT. ##
[4]. Goual, L., & Firoozabadi, A. (2002). Measuring asphaltenes and resins, and dipole moment in petroleum fluids. AIChE Journal, 48(11), 2646-2663. doi.org/10.1002/aic.690481124. ##
[5]. شهابی، م.، قربانپور، ف.، آیت‌اللهی، ش.، و ماهانی، ح. (1403)، بررسی آزمایشگاهی ناپایداری آسفالتین در تزریق آب ‌کم‌شور با استفاده از سامانه دیداری هله-شاو، پژوهش نفت، دوره 34، شماره ویژه ازدیاد برداشت نفت با استفاده از روش‌های پایه آبی، 135، (16–3). doi: 10.22078/pr.2024.5254.3331. ##
[6]. Speight, J. G. (2004). Petroleum Asphaltenes-Part 1: Asphaltenes, resins and the structure of petroleum. Oil & gas science and technology, 59(5), 467-477. doi.org/10.2516/ogst: ##
[7]. Sheu, E. Y., Storm, D. A., & Maureen, M. (1991). Asphaltenes in polar solvents. Journal of non-crystalline solids, 131, 341-347. doi.org/10.1016/0022-3093(91)90326-2. ##
[8]. Vijapurapu, C. S., & Rao, D. N. (2003, February). Effect of brine dilution and surfactant concentration on spreading and wettability. In SPE International Conference on Oilfield Chemistry? (pp. SPE-80273). SPE. doi.org/10.2118/80273-MS. ##
[9]. Alotaibi, M. B., & Nasr-El-Din, H. A. (2009, April). Chemistry of injection water and its impact on oil recovery in carbonate and clastic formations. In SPE International Conference on Oilfield Chemistry? (pp. SPE-121565). SPE. doi.org/10.2118/121565-MS. ##
[10]. Yousef, A. A., Al-Saleh, S., Al-Kaabi, A., & Al-Jawfi, M. (2010, October). Laboratory investigation of novel oil recovery method for carbonate reservoirs. In SPE Canada Unconventional Resources Conference (pp. SPE-137634). SPE. doi.org/10.2118/137634-MS. ##
[11]. Lashkarbolooki, M., Ayatollahi, S., & Riazi, M. (2014). Effect of salinity, resin, and asphaltene on the surface properties of acidic crude oil/smart water/rock system. Energy & Fuels, 28(11), 6820-6829. doi.org/10.1021/ef5015692. ##
[12]. Moeini, F., Hemmati-Sarapardeh, A., Ghazanfari, M. H., Masihi, M., & Ayatollahi, S. (2014). Toward mechanistic understanding of heavy crude oil/brine interfacial tension: The roles of salinity, temperature and pressure. Fluid phase equilibria, 375, 191-200. doi.org/10.1016/j.fluid.2014.04.017. ##
[13]. Moradi, M., & Alvarado, V. (2016). Influence of aqueous-phase ionic strength and composition on the dynamics of water–crude oil interfacial film formation. Energy & Fuels, 30(11), 9170-9180. doi.org/10.1021/acs.energyfuels.6b01841. ##
[14]. Wang, X., Pensini, E., Liang, Y., Xu, Z., Chandra, M.S., Andersen, S.I., Abdallah, W. and Buiting, J.J., 2017. Fatty acid-asphaltene interactions at oil/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 513, pp.168-177. doi.org/10.1016/j.colsurfa.2016.10.029. ##
[15]. Ameri, A., Esmaeilzadeh, F., & Mowla, D. (2019). Effect of brine on asphaltene precipitation at high pressures in oil reservoirs. Petroleum Chemistry, 59(1), 57-65. ##
[16]. Jian, C., Poopari, M. R., Liu, Q., Zerpa, N., Zeng, H., & Tang, T. (2016). Mechanistic understanding of the effect of temperature and salinity on the water/toluene interfacial tension. Energy & Fuels, 30(12), 10228-10235. doi.org/10.1021/acs.energyfuels.6b01995. ##
[17]. Mahmoudvand, M., Javadi, A., & Pourafshary, P. (2019). Brine ions impacts on water-oil dynamic interfacial properties considering asphaltene and maltene constituents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 579, 123665. doi.org/10.1016/j.colsurfa.2019.123665. ##
[18]. Hamidian, R., Lashkarbolooki, M., & Amani, H. (2020). Evaluation of surface activity of asphaltene and resin fractions of crude oil in the presence of different electrolytes through dynamic interfacial tension measurement. Journal of Molecular Liquids, 300, 112297. doi.org/10.1016/j.molliq.2019.112297. ##
[19]. Alves, C. A., Yanes, J. F. R., Feitosa, F. X., & de Sant’Ana, H. B. (2022). Influence of asphaltenes and resins on water/model oil interfacial tension and emulsion behavior: Comparison of extracted fractions from crude oils with different asphaltene stability. Journal of Petroleum Science and Engineering, 208, 109268. doi.org/10.1016/j.petrol.2021.109268. ##
[20]. Ashoorian, S., Javadi, A., Hosseinpour, N., & Nassar, N. N. (2023). Interrelationship of bulk and oil-water interfacial properties of asphaltenes. Journal of Molecular Liquids, 381, 121761. doi.org/10.1016/j.molliq.2023.121761. ##
[21]. Zhang, S., Zhang, L., Lu, X., Shi, C., Tang, T., Wang, X., Huang, Q. and Zeng, H., 2018. Adsorption kinetics of asphaltenes at oil/water interface: Effects of concentration and temperature. Fuel, 212, 387-394, doi.org/10.1016/j.fuel.2017.10.051. ##
[22]. Khalili, H., Fahimpour, J., Sharifi, M., & Isfehani, Z. D. (2022). Investigation of influential parameters on oil/water interfacial tension during low-salinity water injection. Journal of Energy Resources Technology, 144(8), 083008. doi.org/10.1115/1.4053138. ##
[23]. Li, Y., Li, C., Zhao, Z., Cai, W., Xia, X., Yao, B., Sun, G. and Yang, F., 2022. Effects of asphaltene concentration and test temperature on the stability of water-in-model waxy crude oil emulsions. ACS omega, 7(9), 8023-8035, doi: 10.1021/acsomega.1c07174. ##
[24]. رضوانی سیمکانی، ح. (1397). بررسی آزمایشگاهی تغییر خواص سطحی با استفاده از ترکیب آب هوشمند و نانوذرات اکسید آلومینیوم و تأثیر آن بر جریان سیال در محیط متخلخل، پایان‌نامه کارشناسی ارشد مهندسی نفت-اکتشاف، دانشکده مهندسی معدن دانشگاه صنعتی اصفهان. https://library.iut.ac.ir/dL/search/default.aspx?Term=13947&Field=0&DTC=107##
[25]. عبدی، ا. (1399)، بررسی پدیده سطحی سیستم آب هوشمند و نفت آسفالتینی، پایان‌نامه کارشناسی ارشد مهندسی نفت-مخازن هیدروکربوری، دانشکده مهندسی شیمی، نفت و گاز دانشگاه شیراز، پایان‌نامه. ##
[26]. محمدی، ا.، چهاردولی م. و سیم‌جو م. (1400). بررسی آزمایشگاهی تأثیر غلظت آسفالتین و یون‌های دوظرفیتی محلول در آب بر کشش بین‌سطحی سیستم هپتول/آب شور، مجله پژوهش نفت، 31، 121، (140-128). doi.org/10.22078/PR.2021.4322.2958. ##
[27]. طاهریان ز. (1401). بررسی تجربی اثر آسفالتین و خصوصیات آن روی برهم‌کنش‌های سیال/سیال در سیلاب‌زنی آب کم شور، رساله دکتری مهندسی شیمی، دانشکده مهندسی شیمی دانشگاه تربیت مدرس. ##
[28]. Shojaei, S. A., Osfouri, S., Azin, R., & Dehghani, S. A. M. (2020). Kinetic modeling of asphaltene nano-aggregates formation using dynamic light scattering technique. Journal of Petroleum Science and Engineering, 192, 107293. doi.org/10.1016/j.petrol.2020.107293. ##
[29]. Lashkarbolooki, M., Ayatollahi, S., & Riazi, M. (2014). The impacts of aqueous ions on interfacial tension and wettability of an asphaltenic–acidic crude oil reservoir during smart water injection. Journal of Chemical & Engineering Data, 59(11), 3624-3634. doi.org/10.1021/je500730e. ##
[30]. Chávez-Miyauchi, T. E., Firoozabadi, A., & Fuller, G. G. (2016). Nonmonotonic elasticity of the crude oil–brine interface in relation to improved oil recovery. Langmuir, 32(9), 2192-2198. doi.org/10.1021/acs.langmuir.5b04354. ##