[1]. Ansari, A. (2023). Reservoir simulation of the volve oil field using AI-based top-down modeling approach (Doctoral dissertation, West Virginia University). doi.org/10.33915/etd.11970.##
[2]. Sayarpour, M., Zuluaga, E., Kabir, C., & Lake, L. W. (2009). The use of capacitance–resistance models for rapid estimation of waterflood performance and optimization. Journal of Petroleum Science and Engineering, 69(3–4), 227–238. https://doi.org/10.1016/j.petrol.2009.09.006.##
[3]. “Equinor, Disclosing all Volve data,” 2018. [Online]. Available: https://www.equinor.com/news/archive/14jun2018-disclosing-volve-data.##
[4]. Mohaghegh, S. D. (2011). Reservoir simulation and modeling based on pattern recognition. All Days. doi.org/10.2118/143179-ms.##
[5]. Faisal, A., & Mohaghegh, S. D. (2016). A data-driven smart proxy model for a comprehensive reservoir simulation.
[6]. Schuld, M., & Petruccione, F. (2018). Supervised learning with quantum computers. In Quantum science and technology. doi.org/10.1007/978-3-319-96424-9.##
[7]. Donald J. Ford, P. (2011). Training industry. Retrieved from How the Brain Learns: trainingindustry.com/articles/content-development/how-the-brain-learns/.##
[8]. Shahkarami, A., Mohaghegh, S. D., Gholami, V., & Haghighat, S. A. (2014). Artificial intelligence (AI) assiste d history matching. All Days. doi.org/10.2118/169507-ms.##
[9]. Haykin, S. S. (2010). Neural networks and learning machines. ci.nii.ac.jp/ncid/BB00465945.##
[10]. Hernandez, A. (2016). Model calibration with neural networks. SSRN Electronic Journal. doi.org/10.2139/ssrn.2812140.##
[11]. Mohaghegh, S. D. (2017b). Shale Analytics. In Springer eBooks. doi.org/10.1007/978-3-319-48753-3.##
[12]. Mohaghegh, S. D. (2017). Data-Driven reservoir modeling. In Society of Petroleum EngineersRichardson, Texas, USA eBooks. doi.org/10.2118/9781613995600.##
[13]. Mohaghegh, S. D., Gaskari, R. ., Maysami, M. ., & Khazaeni, Y. (2014). Data-Driven reservoir management of a giant mature oilfield in the Middle East. All Days. doi.org/10.2118/170660-ms.##
[14]. Haifi, A. H. M. A. (2019). Confirmation of data-driven reservoir modeling using numerical reservoir simulation. In Partial Fulfillment of the Requirements for the Degree of Master of Science in Petroleum and Natural Gas Engineering doi.org/10.33915/etd.3835.##
[15]. Gomez, Y., Khazaeni, Y., Mohaghegh, S. D., & Gaskari, R. (2009). Top-Down intelligent reservoir modeling (TDIRM). All Days. doi.org/10.2118/124204-ms.##
[16]. Haghighat, S. A., Mohaghegh, S. D., Gholami, V., & Moreno, D. (2014). Production analysis of a Niobrara field using intelligent Top-Down modeling. All Days. doi.org/10.2118/169573-ms.##
[17]. Maysami, M., Gaskari, R., & Mohaghegh, S. D. (2013, September). Data driven analytics in powder river basin, WY. In SPE Annual Technical Conference and Exhibition? (p. D031S033R002). SPE.##
[18]. Alatrach, Y., Saputelli, L., Narayanan, R., Mohan, R., Alklih, M. Y., & Rubio, E. (2019, November). Data-driven vs. traditional reservoir numerical models: A case study comparison of applicability, practicality and performance. In Abu Dhabi International Petroleum Exhibition and Conference (p. D021S030R002). SPE.##
[19]. Zargari, S. & Mohaghegh, S. D. (2010). Field development Strategies for bakken shale Formation. All Days. doi.org/10.2118/139032-ms.##
[20]. Mohaghegh, S. D., Gruic, O., Zargari, S., Dahaghi, A. K., & Bromhal, G. S. (2012). Top-down, intelligent reservoir modelling of oil and gas producing shale reservoirs: case studies. International Journal of Oil Gas and Coal Technology, 5(1), 3. doi.org/10.1504/ijogct.2012.044175.##
[21]. Martinez, Y. A. (2020). Top-Down model development using data generated from a complex numerical reservoir simulation with water injection. In Partial Fulfillment of the Requirements for the Degree of Master of Science in Petroleum and Natural Gas Engineerin doi.org/10.33915/etd.7571.##