Analysis and Simulation of the Molecular Weight Reduction Process of Heavy Hydrocarbons Under Different Operating Conditions of a Perforated Oil Well

Document Type : Research Paper

Authors

1 Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

2 Downstream Campus, Research Institute for the Development of Oil Refining and Processing Technologies, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

10.22078/pr.2025.5571.3475

Abstract

In this study, computational fluid dynamics (CFD) was used to investigate the effect of catalysts on heavy hydrocarbon cracking in the perforated section of an oil well. A three-dimensional model of the vertical well with perforations was developed, assuming Newtonian, incompressible, and laminar fluid flow. Governing equations of flow, mass transfer, and chemical reactions were solved via the finite element method to analyze parameters such as catalyst type, temperature, steam injection, carbon deposition, and well productivity. Results showed that raising the temperature from 350 °C to 425 °C and applying a catalyst layer increased the conversion rate from 7% to 45%. Among the tested catalysts, alumina–silica with low activation energy (22.3 kJ/mol) and high surface area (240.53 m²/g) gave the best performance. Steam injection (steam-to-oil ratios of 0.02–0.1) improved conversion by about 6%. Enlarging the perforation diameter from 4.5 to 10.5 mm boosted well productivity tenfold. The main challenge observed was carbon deposition, which gradually reduced catalyst activity. Overall, simulation results showed good agreement with experimental data.

Keywords

Main Subjects


[1]. Gomaa S., Salem K.G., & Elhoshoudy A., (2024), Gomaa, S., Salem, K. G., & El-hoshoudy, A. N. (2024). Enhanced heavy and extra heavy oil recovery: Current status and new trends. Petroleum, 10(3), 399-410. doi.org/10.1016/j.petlm.2023.10.001.##
[2]. Pajouhan S., Farahbakhsh A., and Dastgheib S. M. M., (2019) Formation stable heavy hydrocarbon/water emulsion by bioemulsifiers produced by bacillus licheniformis, Journal of Petroleum Research, 29(1-98), 146-154,. doi: ##10.22078/pr.2018.3013.2399.[24]. Konno, H., Ohnaka, R., Nishimura, J. I., Tago, T., Nakasaka, Y., & Masuda, T. (2014). Kinetics of the catalytic cracking of naphtha over ZSM-5 zeolite: effect of reduced crystal size on the reaction of naphthenes. Catalysis science & technology, 4(12), 4265-4273. doi.org/10.1039/C4CY00733F.##
[25]. Rochmadi S., MulyoNo P.,  Aziz M., & Budiman A., (2018), Kinetic study of catalytic cracking of bio-oil over silica-alumina catalyst. doi.org/10.15376/biores.13.1.1917-1929.[24]. Konno, H., Ohnaka, R., Nishimura, J. I., Tago, T., Nakasaka, Y., & Masuda, T. (2014). Kinetics of the catalytic cracking of naphtha over ZSM-5 zeolite: effect of reduced crystal size on the reaction of naphthenes. Catalysis science & technology, 4(12), 4265-4273. doi.org/10.1039/C4CY00733F.##
[25]. Rochmadi S., MulyoNo P.,  Aziz M., & Budiman A., (2018), Kinetic study of catalytic cracking of bio-oil over silica-alumina catalyst. doi.org/10.15376/biores.13.1.1917-1929.##
[26]. Zavarukhin, S. G., & Kuvshinov, G. G. (2004). The kinetic model of formation of nanofibrous carbon from CH4–H2 mixture over a high-loaded nickel catalyst with consideration for the catalyst deactivation. Applied Catalysis A: General, 272(1-2), 219-227. doi.org/10.1016/j.apcata.2004.05.044.##
[27]. Mohammed, H. S., Khazal, E. A., & Sultan, H. S. (2020). Studying the effect of perforation parameters on vertical well performance. Basrah Journal for Engineering Sciences, 20(2), 48-59.##
[28]. Mohammed, H. S., Sultan, H. S., & Khazal, E. A. (2022). Simulation of a perforated vertical wellbore with near wall porous media effect. Journal of Petroleum Research and Studies, 12(1), 85-104. doi.org/10.52716/jprs.v12i1.592.
[29]. AlHumaidan, F., Lababidi, H. M., & Al-Rabiah, H. (2013). Thermal cracking kinetics of Kuwaiti vacuum residues in Eureka process. Fuel, 103, 923-931. dx.doi.org/10.1016/j.fuel.2012.08.005. ##
[30]. Marchetti, J. (2021). Reaction engineering, catalyst preparation, and kinetics. CRC Press. doi.org/10.1201/9780429466847.##
[31]. Hart, A., Leeke, G., Greaves, M., & Wood, J. (2014). Downhole heavy crude oil upgrading using CAPRI: Effect of steam upon upgrading and coke formation. Energy & fuels, 28(3), 1811-1819. doi.org/10.1021/ef402300k.##
[32]. Bitarafan, M., BAHRAMI, B. M., & MOTAMED, H. M. (2012). Investigating the Possibility of Coke Formation in Midrex Reformer. sid.ir/paper/114970/en.[24]. Konno, H., Ohnaka, R., Nishimura, J. I., Tago, T., Nakasaka, Y., & Masuda, T. (2014). Kinetics of the catalytic cracking of naphtha over ZSM-5 zeolite: effect of reduced crystal size on the reaction of naphthenes. Catalysis science & technology, 4(12), 4265-4273. doi.org/10.1039/C4CY00733F.##
[25]. Rochmadi S., MulyoNo P.,  Aziz M., & Budiman A., (2018), Kinetic study of catalytic cracking of bio-oil over silica-alumina catalyst. doi.org/10.15376/biores.13.1.1917-1929.##
[26]. Zavarukhin, S. G., & Kuvshinov, G. G. (2004). The kinetic model of formation of nanofibrous carbon from CH4–H2 mixture over a high-loaded nickel catalyst with consideration for the catalyst deactivation. Applied Catalysis A: General, 272(1-2), 219-227. doi.org/10.1016/j.apcata.2004.05.044.##
[27]. Mohammed, H. S., Khazal, E. A., & Sultan, H. S. (2020). Studying the effect of perforation parameters on vertical well performance. Basrah Journal for Engineering Sciences, 20(2), 48-59.##
[28]. Mohammed, H. S., Sultan, H. S., & Khazal, E. A. (2022). Simulation of a perforated vertical wellbore with near wall porous media effect. Journal of Petroleum Research and Studies, 12(1), 85-104. doi.org/10.52716/jprs.v12i1.592.##
[29]. AlHumaidan, F., Lababidi, H. M., & Al-Rabiah, H. (2013). Thermal cracking kinetics of Kuwaiti vacuum residues in Eureka process. Fuel, 103, 923-931. dx.doi.org/10.1016/j.fuel.2012.08.005. 
[30]. Marchetti, J. (2021). Reaction engineering, catalyst preparation, and kinetics. CRC Press. doi.org/10.1201/9780429466847.##
[31]. Hart, A., Leeke, G., Greaves, M., & Wood, J. (2014). Downhole heavy crude oil upgrading using CAPRI: Effect of steam upon upgrading and coke formation. Energy & fuels, 28(3), 1811-1819. doi.org/10.1021/ef402300k.##
[32]. Bitarafan, M., BAHRAMI, B. M., & MOTAMED, H. M. (2012). Investigating the Possibility of Coke Formation in Midrex Reformer. sid.ir/paper/114970/en.##
[33]. Padasa E,. & Saenz G,. (2019), Syngas Production, Properties, and Its Importance, Sustainable Alternative Syngas Fuel, i, 9. http://dx.doi.org/10.5772/intechopen.89379.##
[34]. Nwonodi, R. I. (2024). A novel model for predicting the productivity index of horizontal/vertical wells based on Darcy’s law, drainage radius, and flow convergence. Heliyon, 10(3). doi.org/10.1016/j.heliyon.2024.e25073.##
[33]. Padasa E,. & Saenz G,. (2019), Syngas Production, Properties, and Its Importance, Sustainable Alternative Syngas Fuel, i, 9. http://dx.doi.org/10.5772/intechopen.89379.##
[34]. Nwonodi, R. I. (2024). A novel model for predicting the productivity index of horizontal/vertical wells based on Darcy’s law, drainage radius, and flow convergence. Heliyon, 10(3). doi.org/10.1016/j.heliyon.2024.e25073.##
[26]. Zavarukhin, S. G., & Kuvshinov, G. G. (2004). The kinetic model of formation of nanofibrous carbon from CH4–H2 mixture over a high-loaded nickel catalyst with consideration for the catalyst deactivation. Applied Catalysis A: General, 272(1-2), 219-227. doi.org/10.1016/j.apcata.2004.05.044.##
[27]. Mohammed, H. S., Khazal, E. A., & Sultan, H. S. (2020). Studying the effect of perforation parameters on vertical well performance. Basrah Journal for Engineering Sciences, 20(2), 48-59.##
[28]. Mohammed, H. S., Sultan, H. S., & Khazal, E. A. (2022). Simulation of a perforated vertical wellbore with near wall porous media effect. Journal of Petroleum Research and Studies, 12(1), 85-104. doi.org/10.52716/jprs.v12i1.592.##
[29]. AlHumaidan, F., Lababidi, H. M., & Al-Rabiah, H. (2013). Thermal cracking kinetics of Kuwaiti vacuum residues in Eureka process. Fuel, 103, 923-931. dx.doi.org/10.1016/j.fuel.2012.08.005. ##
[30]. Marchetti, J. (2021). Reaction engineering, catalyst preparation, and kinetics. CRC Press. doi.org/10.1201/9780429466847.##
[31]. Hart, A., Leeke, G., Greaves, M., & Wood, J. (2014). Downhole heavy crude oil upgrading using CAPRI: Effect of steam upon upgrading and coke formation. Energy & fuels, 28(3), 1811-1819. doi.org/10.1021/ef402300k.##
[32]. Bitarafan, M., BAHRAMI, B. M., & MOTAMED, H. M. (2012). Investigating the Possibility of Coke Formation in Midrex Reformer. sid.ir/paper/114970/en.##
[33]. Padasa E,. & Saenz G,. (2019), Syngas Production, Properties, and Its Importance, Sustainable Alternative Syngas Fuel, i, 9. http://dx.doi.org/10.5772/intechopen.89379.##
[34]. Nwonodi, R. I. (2024). A novel model for predicting the productivity index of horizontal/vertical wells based on Darcy’s law, drainage radius, and flow convergence. Heliyon, 10(3). doi.org/10.1016/j.heliyon.2024.e25073.##
[3]. Yatimi Y., Mendil J., Marafi M., Alalou, A., & Al-Dahhan, M.H,.(2024), Advancement in heavy oil upgrading and sustainable exploration emerging techNologies, Arabian Journal of Chemistry, 105610,. doi.org/10.1016/j.arabjc.2024.105610.##
[4]. Li Y., Wang Z., Hu Z., Xu B., Li Y., Pu W., & Zhao, J, (2021), A review of in situ upgrading techNology for [5]. Zhao F., Liu Y., Lu N., Xu  T., Zhu G., & Wang K,. (2021), A review on upgrading and viscosity reduction of heavy oil and bitumen by underground catalytic cracking, Energy Reports, 7(4249-4272), doi.org/10.1016/j.egyr.2021.06.094.##
[6]. Wu  Z., Chen H., Cai  X., Gou Q., Jiang L., Chen K., Chen Z., & Jiang S,. (2023), Current status and future trends of in situ catalytic upgrading of extra heavy oil, Energies, 16(12), 4610, doi.org/10.3390/en16124610. ##
[7]. Li H., Gao H., Zhao X., Xia Z., Yu B., & Sun, D, (2022), Experimental study on viscosity reduction of heavy oil with water content by synergistic effect of microwave and naNo-catalyst, Journal of Petroleum Science and Engineering, 208, 109271, doi.org/10.1016/j.petrol.2021.109271.##
[۸]. نجف‌پور م.، فاتحی‌فر، ا.، خوشبوی، ر. و طباطبائی‌نژاد ع. ر.، (۱۳۹۷)، ارتقای کیفیت ترکیبات سنگین نفتی با استفاده از مایعات یونی اصلاح شده توسط نمک‌های Fe2+ و AL3+، پژوهش نفت، (30)، 99-4، 55-47. doi.org/10.22078/pr.2020.3691.2695.##
[۹]. بوتالاری، ه.، هاشم‌آبادی، س. ح. و مرزپور، ف. (1389)، پیش‌بینی رفتار رئولوژیکی چند هیدروکربن خطی به کمک شبیه‌سازی دینامیک مولکولی. پژوهش نفت، 20(64)، 3-11. https://sid.ir/paper/114718/fa.##
[10]. Salim M.K., Sultan H.S., & AL Shara A.K,. (2017), Effect of shape and parameters of perforation in a vertical wellbore with two perforations (without Porous Media) on pressure drop, Fluid Mechanics, Open Access, 04, 2017, doi. org/10.4172/2476-2296.1000162.##
[11]. Hua L., Yan L., Xiaodong  P., Xindong, L., & Laichao W. (2016),  Pressure drop calculation models of wellbore fluid in perforated completion horizontal wells, IJHT, International Journal of Heat and TechNology, 34, (1), 65-72, doi.org/10.18280/ijht.340110.##
[12]. Wei  K., Ma  B., Xu J., Liu  Q., & Wang, C,. (2024), Study of perforated well productivity by a multi-scale coupling flow model with Darcy-brinkman-Navier/Stokes, Geoenergy Science and Engineering, 243, 213377, doi.org/10.1016/j.geoen.2024.213377.##
[13]. Locke, S,. (1981), An advanced method for predicting the productivity ratio of a perforated well, Journal of Petroleum Technology, 33(12), 2481-2488, doi.org/10.2118/8804-PA.##
[۱۴]. حیاتی جعفربیگی، س.، مشرف دهکردی، م. و ضیائی‌راد، م. (۱۳۹۷)، تخمین میزان شاخص چاه‌ برداشت نفت در مخازن هیدروکربنی به کمک دینامیک سیالات محاسباتی، مهندسی مکانیک مدرس، 18، (1)، ۱۷۷-۱۸۷.##
[15]. Hart A., Wood  J., & Greaves M., (2017), Laboratory investigation of CAPRI catalytic THAI-add-on process for heavy oil production and in situ upgrading, Journal of Analytical and Applied Pyrolysis, 128, 18-26, doi.org/10.1016/j.jaap.2017.11.004. ##
[16]. Askarian M.,  Vatani A., Edalat M., (2017), Heavy oil upgrading in a hydrodynamic cavitation setup: the effect of hydrogen donor and metal nanoparticles, Journal of Petroleum Research, 27(4-96), 4-17. doi: 10.22078/pr.2017.2076.1981.##
[17]. Pashikanti K., & Liu Y., (2011),  Predictive modeling of large-scale integrated refinery reaction and fractionation systems from plant data. Part 2: Fluid catalytic cracking (FCC) process, Energy & fuels, 25(11), 5298-5319, doi.org/10.1021/ef200750x.##
[18]. Ortiz-MoreNo H., Ramírez J., Cuevas R., Marroquín G., & Ancheyta J., (2012), Heavy oil upgrading at moderate pressure using dispersed catalysts: Effects of temperature, pressure and catalytic precursor, Fuel, 100, 186-192, doi.org/10.1016/j.fuel.2012.08.005.##
[19]. Arastoopour H., Gidaspow D., & Lyczkowski R.W.,(2022), Transport pheNomena in multiphase systems. Springer.##
[20]. Tharanivasan A.K., Yang C., & Gu, Y., (2006), Measurements of molecular diffusion coefficients of carbon dioxide, methane, and propane in heavy oil under reservoir conditions, Energy & Fuels, 20(6), 2509-2517, doi.org/10.1021/ef060080d. ##
[21]. Wang x., Li j., (2020), Numerical simulation of mass transfer in porous Media for Heavy oil upgrading  Journal of Petroleum Science and Engineering,.##
[22]. Corma A., Mengual J., & Miguel P.J., (2012), Steam catalytic cracking of naphtha over ZSM-5 zeolite for production of propene and ethene: Micro and macroscopic implications of the presence of steam, Applied Catalysis A: General, 417, 220-235, doi.org/10.1016/j.apcata.2011.12.044.##
[23]. Dehkordi, J. A., Jafari, A., Sabet, S. A., & Karami, F. (2018). Kinetic studies on extra heavy crude oil upgrading using nanocatalysts by applying CFD techniques. Chinese journal of chemical engineering, 26(2), 343-355.doi.org/10.1016/j.cjche.2017.07.001.##
[24]. Konno, H., Ohnaka, R., Nishimura, J. I., Tago, T., Nakasaka, Y., & Masuda, T. (2014). Kinetics of the catalytic cracking of naphtha over ZSM-5 zeolite: effect of reduced crystal size on the reaction of naphthenes. Catalysis science & technology, 4(12), 4265-4273. doi.org/10.1039/C4CY00733F.##
[25]. Rochmadi S., MulyoNo P.,  Aziz M., & Budiman A., (2018), Kinetic study of catalytic cracking of bio-oil over silica-alumina catalyst. doi.org/10.15376/biores.13.1.1917-1929.##
[26]. Zavarukhin, S. G., & Kuvshinov, G. G. (2004). The kinetic model of formation of nanofibrous carbon from CH4–H2 mixture over a high-loaded nickel catalyst with consideration for the catalyst deactivation. Applied Catalysis A: General, 272(1-2), 219-227. doi.org/10.1016/j.apcata.2004.05.044.##
[27]. Mohammed, H. S., Khazal, E. A., & Sultan, H. S. (2020). Studying the effect of perforation parameters on vertical well performance. Basrah Journal for Engineering Sciences, 20(2), 48-59.##
[28]. Mohammed, H. S., Sultan, H. S., & Khazal, E. A. (2022). Simulation of a perforated vertical wellbore with near wall porous media effect. Journal of Petroleum Research and Studies, 12(1), 85-104. doi.org/10.52716/jprs.v12i1.592.##
[29]. AlHumaidan, F., Lababidi, H. M., & Al-Rabiah, H. (2013). Thermal cracking kinetics of Kuwaiti vacuum residues in Eureka process. Fuel, 103, 923-931. dx.doi.org/10.1016/j.fuel.2012.08.005. ##
[30]. Marchetti, J. (2021). Reaction engineering, catalyst preparation, and kinetics. CRC Press. doi.org/10.1201/9780429466847.##
[31]. Hart, A., Leeke, G., Greaves, M., & Wood, J. (2014). Downhole heavy crude oil upgrading using CAPRI: Effect of steam upon upgrading and coke formation. Energy & fuels, 28(3), 1811-1819. doi.org/10.1021/ef402300k.##
[32]. Bitarafan, M., BAHRAMI, B. M., & MOTAMED, H. M. (2012). Investigating the Possibility of Coke Formation in Midrex Reformer. sid.ir/paper/114970/en.##
[33]. Padasa E,. & Saenz G,. (2019), Syngas Production, Properties, and Its Importance, Sustainable Alternative Syngas Fuel, i, 9. http://dx.doi.org/10.5772/intechopen.89379.##
[34]. Nwonodi, R. I. (2024). A novel model for predicting the productivity index of horizontal/vertical wells based on Darcy’s law, drainage radius, and flow convergence. Heliyon, 10(3). doi.org/10.1016/j.heliyon.2024.e25073.##