[1]. Gomaa S., Salem K.G., & Elhoshoudy A., (2024), Gomaa, S., Salem, K. G., & El-hoshoudy, A. N. (2024). Enhanced heavy and extra heavy oil recovery: Current status and new trends. Petroleum, 10(3), 399-410. doi.org/10.1016/j.petlm.2023.10.001.##
[2]. Pajouhan S., Farahbakhsh A., and Dastgheib S. M. M., (2019) Formation stable heavy hydrocarbon/water emulsion by bioemulsifiers produced by bacillus licheniformis, Journal of Petroleum Research, 29(1-98), 146-154,. doi: ##10.22078/pr.2018.3013.2399.[24]. Konno, H., Ohnaka, R., Nishimura, J. I., Tago, T., Nakasaka, Y., & Masuda, T. (2014). Kinetics of the catalytic cracking of naphtha over ZSM-5 zeolite: effect of reduced crystal size on the reaction of naphthenes. Catalysis science & technology, 4(12), 4265-4273. doi.org/10.1039/C4CY00733F.##
[25]. Rochmadi S., MulyoNo P., Aziz M., & Budiman A., (2018), Kinetic study of catalytic cracking of bio-oil over silica-alumina catalyst. doi.org/10.15376/biores.13.1.1917-1929.[24]. Konno, H., Ohnaka, R., Nishimura, J. I., Tago, T., Nakasaka, Y., & Masuda, T. (2014). Kinetics of the catalytic cracking of naphtha over ZSM-5 zeolite: effect of reduced crystal size on the reaction of naphthenes. Catalysis science & technology, 4(12), 4265-4273. doi.org/10.1039/C4CY00733F.##
[25]. Rochmadi S., MulyoNo P., Aziz M., & Budiman A., (2018), Kinetic study of catalytic cracking of bio-oil over silica-alumina catalyst. doi.org/10.15376/biores.13.1.1917-1929.##
[26]. Zavarukhin, S. G., & Kuvshinov, G. G. (2004). The kinetic model of formation of nanofibrous carbon from CH4–H2 mixture over a high-loaded nickel catalyst with consideration for the catalyst deactivation. Applied Catalysis A: General, 272(1-2), 219-227. doi.org/10.1016/j.apcata.2004.05.044.##
[27]. Mohammed, H. S., Khazal, E. A., & Sultan, H. S. (2020). Studying the effect of perforation parameters on vertical well performance. Basrah Journal for Engineering Sciences, 20(2), 48-59.##
[28]. Mohammed, H. S., Sultan, H. S., & Khazal, E. A. (2022). Simulation of a perforated vertical wellbore with near wall porous media effect. Journal of Petroleum Research and Studies, 12(1), 85-104. doi.org/10.52716/jprs.v12i1.592.
[29]. AlHumaidan, F., Lababidi, H. M., & Al-Rabiah, H. (2013). Thermal cracking kinetics of Kuwaiti vacuum residues in Eureka process. Fuel, 103, 923-931. dx.doi.org/10.1016/j.fuel.2012.08.005. ##
[30]. Marchetti, J. (2021). Reaction engineering, catalyst preparation, and kinetics. CRC Press. doi.org/10.1201/9780429466847.##
[31]. Hart, A., Leeke, G., Greaves, M., & Wood, J. (2014). Downhole heavy crude oil upgrading using CAPRI: Effect of steam upon upgrading and coke formation. Energy & fuels, 28(3), 1811-1819. doi.org/10.1021/ef402300k.##
[32]. Bitarafan, M., BAHRAMI, B. M., & MOTAMED, H. M. (2012). Investigating the Possibility of Coke Formation in Midrex Reformer. sid.ir/paper/114970/en.[24]. Konno, H., Ohnaka, R., Nishimura, J. I., Tago, T., Nakasaka, Y., & Masuda, T. (2014). Kinetics of the catalytic cracking of naphtha over ZSM-5 zeolite: effect of reduced crystal size on the reaction of naphthenes. Catalysis science & technology, 4(12), 4265-4273. doi.org/10.1039/C4CY00733F.##
[25]. Rochmadi S., MulyoNo P., Aziz M., & Budiman A., (2018), Kinetic study of catalytic cracking of bio-oil over silica-alumina catalyst. doi.org/10.15376/biores.13.1.1917-1929.##
[26]. Zavarukhin, S. G., & Kuvshinov, G. G. (2004). The kinetic model of formation of nanofibrous carbon from CH4–H2 mixture over a high-loaded nickel catalyst with consideration for the catalyst deactivation. Applied Catalysis A: General, 272(1-2), 219-227. doi.org/10.1016/j.apcata.2004.05.044.##
[27]. Mohammed, H. S., Khazal, E. A., & Sultan, H. S. (2020). Studying the effect of perforation parameters on vertical well performance. Basrah Journal for Engineering Sciences, 20(2), 48-59.##
[28]. Mohammed, H. S., Sultan, H. S., & Khazal, E. A. (2022). Simulation of a perforated vertical wellbore with near wall porous media effect. Journal of Petroleum Research and Studies, 12(1), 85-104. doi.org/10.52716/jprs.v12i1.592.##
[29]. AlHumaidan, F., Lababidi, H. M., & Al-Rabiah, H. (2013). Thermal cracking kinetics of Kuwaiti vacuum residues in Eureka process. Fuel, 103, 923-931. dx.doi.org/10.1016/j.fuel.2012.08.005.
[30]. Marchetti, J. (2021). Reaction engineering, catalyst preparation, and kinetics. CRC Press. doi.org/10.1201/9780429466847.##
[31]. Hart, A., Leeke, G., Greaves, M., & Wood, J. (2014). Downhole heavy crude oil upgrading using CAPRI: Effect of steam upon upgrading and coke formation. Energy & fuels, 28(3), 1811-1819. doi.org/10.1021/ef402300k.##
[32]. Bitarafan, M., BAHRAMI, B. M., & MOTAMED, H. M. (2012). Investigating the Possibility of Coke Formation in Midrex Reformer. sid.ir/paper/114970/en.##
[33]. Padasa E,. & Saenz G,. (2019), Syngas Production, Properties, and Its Importance, Sustainable Alternative Syngas Fuel, i, 9. http://dx.doi.org/10.5772/intechopen.89379.##
[34]. Nwonodi, R. I. (2024). A novel model for predicting the productivity index of horizontal/vertical wells based on Darcy’s law, drainage radius, and flow convergence. Heliyon, 10(3). doi.org/10.1016/j.heliyon.2024.e25073.##
[33]. Padasa E,. & Saenz G,. (2019), Syngas Production, Properties, and Its Importance, Sustainable Alternative Syngas Fuel, i, 9. http://dx.doi.org/10.5772/intechopen.89379.##
[34]. Nwonodi, R. I. (2024). A novel model for predicting the productivity index of horizontal/vertical wells based on Darcy’s law, drainage radius, and flow convergence. Heliyon, 10(3). doi.org/10.1016/j.heliyon.2024.e25073.##
[26]. Zavarukhin, S. G., & Kuvshinov, G. G. (2004). The kinetic model of formation of nanofibrous carbon from CH4–H2 mixture over a high-loaded nickel catalyst with consideration for the catalyst deactivation. Applied Catalysis A: General, 272(1-2), 219-227. doi.org/10.1016/j.apcata.2004.05.044.##
[27]. Mohammed, H. S., Khazal, E. A., & Sultan, H. S. (2020). Studying the effect of perforation parameters on vertical well performance. Basrah Journal for Engineering Sciences, 20(2), 48-59.##
[28]. Mohammed, H. S., Sultan, H. S., & Khazal, E. A. (2022). Simulation of a perforated vertical wellbore with near wall porous media effect. Journal of Petroleum Research and Studies, 12(1), 85-104. doi.org/10.52716/jprs.v12i1.592.##
[29]. AlHumaidan, F., Lababidi, H. M., & Al-Rabiah, H. (2013). Thermal cracking kinetics of Kuwaiti vacuum residues in Eureka process. Fuel, 103, 923-931. dx.doi.org/10.1016/j.fuel.2012.08.005. ##
[30]. Marchetti, J. (2021). Reaction engineering, catalyst preparation, and kinetics. CRC Press. doi.org/10.1201/9780429466847.##
[31]. Hart, A., Leeke, G., Greaves, M., & Wood, J. (2014). Downhole heavy crude oil upgrading using CAPRI: Effect of steam upon upgrading and coke formation. Energy & fuels, 28(3), 1811-1819. doi.org/10.1021/ef402300k.##
[32]. Bitarafan, M., BAHRAMI, B. M., & MOTAMED, H. M. (2012). Investigating the Possibility of Coke Formation in Midrex Reformer. sid.ir/paper/114970/en.##
[33]. Padasa E,. & Saenz G,. (2019), Syngas Production, Properties, and Its Importance, Sustainable Alternative Syngas Fuel, i, 9. http://dx.doi.org/10.5772/intechopen.89379.##
[34]. Nwonodi, R. I. (2024). A novel model for predicting the productivity index of horizontal/vertical wells based on Darcy’s law, drainage radius, and flow convergence. Heliyon, 10(3). doi.org/10.1016/j.heliyon.2024.e25073.##
[3]. Yatimi Y., Mendil J., Marafi M., Alalou, A., & Al-Dahhan, M.H,.(2024), Advancement in heavy oil upgrading and sustainable exploration emerging techNologies, Arabian Journal of Chemistry, 105610,. doi.org/10.1016/j.arabjc.2024.105610.##
[4]. Li Y., Wang Z., Hu Z., Xu B., Li Y., Pu W., & Zhao, J, (2021), A review of in situ upgrading techNology for [5]. Zhao F., Liu Y., Lu N., Xu T., Zhu G., & Wang K,. (2021), A review on upgrading and viscosity reduction of heavy oil and bitumen by underground catalytic cracking, Energy Reports, 7(4249-4272), doi.org/10.1016/j.egyr.2021.06.094.##
[6]. Wu Z., Chen H., Cai X., Gou Q., Jiang L., Chen K., Chen Z., & Jiang S,. (2023), Current status and future trends of in situ catalytic upgrading of extra heavy oil, Energies, 16(12), 4610, doi.org/10.3390/en16124610. ##
[7]. Li H., Gao H., Zhao X., Xia Z., Yu B., & Sun, D, (2022), Experimental study on viscosity reduction of heavy oil with water content by synergistic effect of microwave and naNo-catalyst, Journal of Petroleum Science and Engineering, 208, 109271, doi.org/10.1016/j.petrol.2021.109271.##
[۸]. نجفپور م.، فاتحیفر، ا.، خوشبوی، ر. و طباطبائینژاد ع. ر.، (۱۳۹۷)، ارتقای کیفیت ترکیبات سنگین نفتی با استفاده از مایعات یونی اصلاح شده توسط نمکهای Fe2+ و AL3+، پژوهش نفت، (30)، 99-4، 55-47. doi.org/10.22078/pr.2020.3691.2695.##
[۹]. بوتالاری، ه.، هاشمآبادی، س. ح. و مرزپور، ف. (1389)، پیشبینی رفتار رئولوژیکی چند هیدروکربن خطی به کمک شبیهسازی دینامیک مولکولی. پژوهش نفت، 20(64)، 3-11. https://sid.ir/paper/114718/fa.##
[10]. Salim M.K., Sultan H.S., & AL Shara A.K,. (2017), Effect of shape and parameters of perforation in a vertical wellbore with two perforations (without Porous Media) on pressure drop, Fluid Mechanics, Open Access, 04, 2017, doi. org/10.4172/2476-2296.1000162.##
[11]. Hua L., Yan L., Xiaodong P., Xindong, L., & Laichao W. (2016), Pressure drop calculation models of wellbore fluid in perforated completion horizontal wells, IJHT, International Journal of Heat and TechNology, 34, (1), 65-72, doi.org/10.18280/ijht.340110.##
[12]. Wei K., Ma B., Xu J., Liu Q., & Wang, C,. (2024), Study of perforated well productivity by a multi-scale coupling flow model with Darcy-brinkman-Navier/Stokes, Geoenergy Science and Engineering, 243, 213377, doi.org/10.1016/j.geoen.2024.213377.##
[13]. Locke, S,. (1981), An advanced method for predicting the productivity ratio of a perforated well, Journal of Petroleum Technology, 33(12), 2481-2488, doi.org/10.2118/8804-PA.##
[۱۴]. حیاتی جعفربیگی، س.، مشرف دهکردی، م. و ضیائیراد، م. (۱۳۹۷)، تخمین میزان شاخص چاه برداشت نفت در مخازن هیدروکربنی به کمک دینامیک سیالات محاسباتی، مهندسی مکانیک مدرس، 18، (1)، ۱۷۷-۱۸۷.##
[15]. Hart A., Wood J., & Greaves M., (2017), Laboratory investigation of CAPRI catalytic THAI-add-on process for heavy oil production and in situ upgrading, Journal of Analytical and Applied Pyrolysis, 128, 18-26, doi.org/10.1016/j.jaap.2017.11.004. ##
[16]. Askarian M., Vatani A., Edalat M., (2017), Heavy oil upgrading in a hydrodynamic cavitation setup: the effect of hydrogen donor and metal nanoparticles, Journal of Petroleum Research, 27(4-96), 4-17. doi: 10.22078/pr.2017.2076.1981.##
[17]. Pashikanti K., & Liu Y., (2011), Predictive modeling of large-scale integrated refinery reaction and fractionation systems from plant data. Part 2: Fluid catalytic cracking (FCC) process, Energy & fuels, 25(11), 5298-5319, doi.org/10.1021/ef200750x.##
[18]. Ortiz-MoreNo H., Ramírez J., Cuevas R., Marroquín G., & Ancheyta J., (2012), Heavy oil upgrading at moderate pressure using dispersed catalysts: Effects of temperature, pressure and catalytic precursor, Fuel, 100, 186-192, doi.org/10.1016/j.fuel.2012.08.005.##
[19]. Arastoopour H., Gidaspow D., & Lyczkowski R.W.,(2022), Transport pheNomena in multiphase systems. Springer.##
[20]. Tharanivasan A.K., Yang C., & Gu, Y., (2006), Measurements of molecular diffusion coefficients of carbon dioxide, methane, and propane in heavy oil under reservoir conditions, Energy & Fuels, 20(6), 2509-2517, doi.org/10.1021/ef060080d. ##
[21]. Wang x., Li j., (2020), Numerical simulation of mass transfer in porous Media for Heavy oil upgrading Journal of Petroleum Science and Engineering,.##
[22]. Corma A., Mengual J., & Miguel P.J., (2012), Steam catalytic cracking of naphtha over ZSM-5 zeolite for production of propene and ethene: Micro and macroscopic implications of the presence of steam, Applied Catalysis A: General, 417, 220-235, doi.org/10.1016/j.apcata.2011.12.044.##
[23]. Dehkordi, J. A., Jafari, A., Sabet, S. A., & Karami, F. (2018). Kinetic studies on extra heavy crude oil upgrading using nanocatalysts by applying CFD techniques. Chinese journal of chemical engineering, 26(2), 343-355.doi.org/10.1016/j.cjche.2017.07.001.##
[24]. Konno, H., Ohnaka, R., Nishimura, J. I., Tago, T., Nakasaka, Y., & Masuda, T. (2014). Kinetics of the catalytic cracking of naphtha over ZSM-5 zeolite: effect of reduced crystal size on the reaction of naphthenes. Catalysis science & technology, 4(12), 4265-4273. doi.org/10.1039/C4CY00733F.##
[25]. Rochmadi S., MulyoNo P., Aziz M., & Budiman A., (2018), Kinetic study of catalytic cracking of bio-oil over silica-alumina catalyst. doi.org/10.15376/biores.13.1.1917-1929.##
[26]. Zavarukhin, S. G., & Kuvshinov, G. G. (2004). The kinetic model of formation of nanofibrous carbon from CH4–H2 mixture over a high-loaded nickel catalyst with consideration for the catalyst deactivation. Applied Catalysis A: General, 272(1-2), 219-227. doi.org/10.1016/j.apcata.2004.05.044.##
[27]. Mohammed, H. S., Khazal, E. A., & Sultan, H. S. (2020). Studying the effect of perforation parameters on vertical well performance. Basrah Journal for Engineering Sciences, 20(2), 48-59.##
[28]. Mohammed, H. S., Sultan, H. S., & Khazal, E. A. (2022). Simulation of a perforated vertical wellbore with near wall porous media effect. Journal of Petroleum Research and Studies, 12(1), 85-104. doi.org/10.52716/jprs.v12i1.592.##
[29]. AlHumaidan, F., Lababidi, H. M., & Al-Rabiah, H. (2013). Thermal cracking kinetics of Kuwaiti vacuum residues in Eureka process. Fuel, 103, 923-931. dx.doi.org/10.1016/j.fuel.2012.08.005. ##
[30]. Marchetti, J. (2021). Reaction engineering, catalyst preparation, and kinetics. CRC Press. doi.org/10.1201/9780429466847.##
[31]. Hart, A., Leeke, G., Greaves, M., & Wood, J. (2014). Downhole heavy crude oil upgrading using CAPRI: Effect of steam upon upgrading and coke formation. Energy & fuels, 28(3), 1811-1819. doi.org/10.1021/ef402300k.##
[32]. Bitarafan, M., BAHRAMI, B. M., & MOTAMED, H. M. (2012). Investigating the Possibility of Coke Formation in Midrex Reformer. sid.ir/paper/114970/en.##
[33]. Padasa E,. & Saenz G,. (2019), Syngas Production, Properties, and Its Importance, Sustainable Alternative Syngas Fuel, i, 9. http://dx.doi.org/10.5772/intechopen.89379.##
[34]. Nwonodi, R. I. (2024). A novel model for predicting the productivity index of horizontal/vertical wells based on Darcy’s law, drainage radius, and flow convergence. Heliyon, 10(3). doi.org/10.1016/j.heliyon.2024.e25073.##