Improving Fischer-Tropsch Synthesis Stability, Activity, and Selectivity Using Functionalized CNT-supported Cobalt Catalyst

Document Type : Research Paper

Authors

1 Gas Research Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

2 Nanotechnology Research Center, Research Institute of Petroleum Industry, Tehran, Iran

3 Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran

Abstract

The influence of functionalizing carbon nanotube (CNT) of CNT-supported nanocatalyst in Fischer-Tropsch synthesis (FTS) has been investigated. The catalysts were synthesized by the wet impregnation of 10 wt.% of cobalt loading over CNT and functionalized CNT. The catalysts were characterized by using BET, XRD, H2 chemisorption, TPR, and TEM. According to the TEM analysis, smaller cobalt particles (3-8 nm) synthesized on functionalized CNT had very narrow particle size distributions and were mostly confined inside the CNT. The deposition of cobalt nanoparticles synthesized on functionalized CNT shifted the reduction peaks to a lower temperature, indicating higher reducibility of uniform cobalt particles. Using the proposed functionalized CNT-supported cobalt catalyst increased the FTS rate (g HC/gcat./hr), Co conversion (%), and C5+ selectivity (%) from 0.35 to 0.43, 52.8 to 62, and 85 to 90 respectively; however, CH4 selectivity (%) decreased from 11 to 5 compared to that of the catalyst prepared on conventional CNT. This new catalyst preparation method may offer an attractive alternative approach to nanoparticle synthesis with uniform and various size distributions.
 

Keywords


[1]. Cho G. N., Kramer S. J., Tam S. T. and Fox J. M., Design/economics of a natural gas based Fischer-Tropsch plant, in Spring National Meeting, American Institute of Chemical Engineers, Houston, 1996.
[2]. Hammache S., Goodwin J. G. and, Oukaci R., “Passivation of a Co–Ru/γ -Al2O3 Fischer–Tropsch catalyst”, Catal. Today, 71, pp. 361-367, 2002.
[3]. Rohr F., Lindvag O. A., Holmen A. and Blekkan E.A., “Fischer–Tropsch synthesis over cobalt catalysts supported on zirconia-modified alumina”, Catal. Today, 58, pp. 247-254, 2000.
[4]. Ernest B., Bensaddik A., Hilaire L., chaumette P. and Kiennemann A., “Study on a cobalt silica catalyst during reduction and Fischer-Tropsch reaction: In situ EXAFS compared to XPS and XRD”, Catal. Today 39, pp. 329-341, 1998.
[5]. Tavasoli A., Rashidi A. M., Sadaghiani K., Karimi A., Khodadadi A. and Mortazavi Y., Carbon nano-tube supported cobalt catalyst for converting synthesis gas to hydrocarbons, European Patent, EP 1782885, 2007.
[6]. Bezemer G. L., Van Laak A., Van Dillen A. J. and De Jong K. P., “Cobalt supported on carbon nanofibers - A promising novel Fischer-Tropsch catalyst”,Stud. Surf. Sci. Catal., 147, pp. 259-264, 2004.
[7]. Y. Zhang, Y. Liu, G. Yang, Y. Endo and N. Tsubaki, “The solvent effects during preparation of Fischer–Tropsch synthesis catalysts: Improvement of reducibility, dispersion of supported cobalt and stability of catalyst”, Catal. Today, 142, pp. 85-89, 2009.
[8]. Rashidi A. M., Nouralishahi A., Khodadadi A. A., Mortazavi Y., Karimi A. and Kashefi K., “Modification of single wall carbon nanotubes (SWNT) for hydrogen storage”, Int. J. Hydrogen Energy, 35, pp. 9489-9495, 2010.
[9]. Rashidi A. M., Karimi A., Bozorgzadeh H. R., Kashefi K. and Zare M., “Syntheis of SWNTs over Co-Mo/MgO Nanoporous and using  as a catalyst support for  selective hydrogenation of syngas to hydrocarbon”, J. Nat. Gas Chem., 19, pp. 548-551, 2010.
[10]. Naeimi H., Mohajeri A., Moradi L. and Rashidi A.M., “Efficient and facile one pot carboxylation of multiwalled carbon nanotubes by using oxidation with ozone under mild conditions”, Appl. Surf.  Sci. 256, pp. 631-635, 2009.
[11]. Karimi A., Nakhaei Pour A., Torabi F., Hatami B., Alaei M. and Irani M., “Fischer-Tropsch synthesis over ruthenium promoted Co/Al2O3 catalyst with different reduction procedure”, J. Nat. Gas Chem. 19, pp. 503-508, 2010.
[12]. Tre´panier M., Dalai A. K., Abatzoglou N., “Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique: Role of nanoparticle size on reducibility”, activity and selectivity in Fischer–Tropsch reactions", Appl. Catal. A: General 374, pp. 79-86, 2010.
[13]. Karimi A, Nasernejad B, Rashidi A. M., “Particle size control effect on activity and selectivity of cobalt supported functionalized CNT in Fischer – Tropsch Synthesis”, Korean J Chem. Eng, 29, pp. 1516-1524, 2012.
[14]. Tavasoli A., Sadaghiani K., Nakhaeipour A. and Ghalbi Ahangari M., Cobalt Loading Effects on the Structure and Activity for Fischer-Tropsch and Water–gas Shift Reactions of Co/Al2O3 Catalysts, I. J. Chem. Chem. Eng., 26, 1, 2007.
[15]. Tavasoli A., Malek Abbaslou R. M., Tre´panier M. and Dalai A. K., “Fischer-Tropsch synthesis over cobalt catalyst supported on carbon nanotubes in a slurry reactor”, Appl. Catal. A, 345, pp. 134-142, 2008.
[16]. R. J. A. M. TerÖrde, Ph.D. Thesis, Utrecht University, Utrecht, the Netherlands, (1996).
[17]. Chen W., Fan Z., Pan X. and Bao X., “Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst”, J. Am. Chem. Soc., 130, pp. 9414-9419, 2008.
[18]. Malek Abbaslou R. M., Tavasoli A. and Dalai A. K., “Effect of pre-treatment on physico-chemical properties and stability of carbonnanotubes supported iron Fischer–Tropsch catalysts”, Appl. Catal. A: General, 355, pp. 33-41, 2009.
[19]. Martínez A., López C., Márquez F. and Díaz I., “Fischer-Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: The influence of metal loading, cobalt precursor, and promoters” J. Catal., 220, pp. 486-499, 2003.
[20]. Bezemer G. L., Bitter J. H., Kuipers H. P. C. E., Oosterbeek H., Holewijin J. E., Xu X., Kapteijn F., Van Dillen A. J. and De Jong K. P., “Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts”, J. Am. Chem. Soc., 128, pp. 3956-3964, 2006.
[21]. Bezemer G. L., Radstake P. B., Koot V., Van Dillen A. J., Geus J. W. and De Jong K. P., “Preparation of Fischer- Tropsch cobalt catalysts supported on carbon nanofibers and silica using homogeneous deposition-precipitation”, J. Catal., pp. 237, 291, 2006.
[22]. Ho S. W. and Su Y. S., “Effects of Ethanol Impregnation on the catalytic Properties of Silica-Supported Cobalt Catalysts”, J. Catal., 168, pp. 51-59, 1997.
[23]. Tavasoli A., Mortazavi Y., Khodadadi A., Sadagiani K. and Karimi A., “Effects of different loadings of Ru and Re on physico-chemical properties and performance of 15% Co/Al2O3 FTS catalysts”, I. J. Chem. Chem. Eng., 35, pp. 9-15, 2005.
[24]. Das T. K., Jacobs G., Patterson P. M., Conner W. A., Li J. and Davis B. H., “Fischer-Tropsch synthesis: characterization and catalytic properties of rhenium promoted cobalt alumina catalysts”, Fuel, 82, pp. 805-815, 2003.