The Prediction of Semiclathrate Hydrate Dissociation Conditions by Artificial Neural Network Tools for the Systems of (Methane / Carbon Dioxide / Nitrogen) + TBAC + Water

Document Type : Research Paper

Authors

1 Faculty of Engineering, University of Bojnord, Iran

2 Faculty of Science, University of Bojnord, Iran

3 Faculty of Engineering, Shahrekord University, Iran

Abstract

Semiclathrate hydrates are new structure of gas hydrates that dramatically promote the gas hydrate dissociation conditions, but there are few thermodynamic models to predict the semiclathrate hydrate dissociation conditions. In this research, the multi-layer perceptron artificial neural network tools were employed to predict the semiclathrate hydrate dissociation conditions for the systems of methane + TBAC + water, carbon dioxide + TBAC + water, and nitrogen + TBAC + water. A wide range of experimental data which was reported in the literature was used to develop this algorithm. Mass fraction (0 - 0.3618) TBAC aqueous solution data were utilized to train the artificial neural network. %85 of literature data points were used to train and develop the network and 15% of literature data points were used to examine the developed artificial neural networks. The predicted data by the developed artificial neural network (for the systems of methane + TBAC + water, carbon dioxide + TBAC + water, and nitrogen + TBAC + water) showed an acceptable agreement with experimental data.
 

Keywords


[1]. Sloan J. E. D. and K. A. Koh., “Clathrate hydrates of natural gases,” CRC Press, Taylor & Francis Group, 2008.##
[2]. Lasich M., Mohammadi A. H., Bolton K., Vrabec J. and Ramjugernath D., “On the application of binary correction factors in lattice distortion calculations for methane clathrate hydrates,” Philosophical Magazine, 94: pp. 974-990, 19 Feb 2014.##
[3]. Lasich M., Mohammadi A. H., Bolton K., Vrabec J. and Ramjugernath D ,“Phase equilibria of methane clathrate hydrates from grand canonical monte carlo simulations,” Fluid Phase Equilibria, Vol. 369, pp. 1-118, 15 May 2014.
[4]. Lasich M., Mohammadi A. H. , K. Bolton, Vrabec J. and Ramjugernath D., “Influence of unlike dispersion interactions in modeling methane clathrate hydrates,” Fluid Phase Equilibria, Vol. 381, pp. 108–115, 15 Nov. 2014.##
[5]. Sfaxi, I. B. A., V. Belandria, A. H. Mohammadi, Lugoa R., Richon D., “Phase equilibria of CO2+ N2 and CO2+ CH4 clathrate hydrates: experimental measurements and thermodynamic modelling,” Chemical Engineering Science, Vol. 84, pp. 602-611, 24 Dec. 2012.##
[6]. Eslamimanesh, A., S. Babaee, F. Gharagheizi, Javanmardid J., MohammadiA. H. and Richon D., “Assessment of clathrate hydrate phase equilibrium data for CO2+ CH4/N2+ water system,” Fluid Phase Equilibria, Vol. 349, pp. 71-82, 15 July 2013.##
[7]. Mohammadi A. H. and D. Richon., “Clathrate hydrate dissociation conditions for the methane+ cycloheptane/cyclooctane + water and carbon dioxide + cycloheptane/cyclooctane + Water Systems,” Chemical Engineering Science, Vol. 65, pp. 3356-3361, 2010.##
[8]. Mohammadi, A. H. and D. Richon., “Equilibrium data of carbonyl sulfide and hydrogen sulfide clathrate hydrates,” Journal of Chemical & Engineering Data, Vol. 54, pp. 2338-2340, 2009.##
[9]. Mohammadi A. H. and Richon D., “Phase equilibria of clathrate hydrates of methyl cyclopentane, methyl Cyclohexane, Cyclopentane or Cyclohexane + Carbon Dioxide,” Chemical Engineering Science, 64: 5319-5322, 2009.##
[10]. Mohammadi A. H. and Richon D., “Clathrate hydrates of isopentane + Carbon Dioxide and Isopentane + Methane: experimental measurements of dissociation conditions,” Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 65: 879-882, 2010.##
[11]. Ngema P. T., Petticrew C., P. Naidoo, Mohammadi A. H., and Ramjugernath D., “Experimental measurements and thermodynamic modeling of the dissociation conditions of clathrate hydrates for(refrigerant+ NaCl+ Water) Systems,” Journal of Chemical & Engineering Data, 59: 466-475, 2014.##
[12]. Ngema P. T., Petticrew C., Naidoo P., Mohammadi A. H. and Ramjugernath D., “Experimental measurements and thermodynamic modeling of The dissociation conditions of clathrate hydrates for (refrigerant + NaCl + Water) Systems,” Journal of Chemical & Engineering Data, 59, 466-475, 2014.##
[13]. Hashemi H., Babaee S., Naidoo P., Mohammadi A. H. and Ramjugernath D., “Experimental Measurements and Thermodynamic Modeling of Clathrate Hydrate Dissociation Conditions for Refrigerants R116, R23 and Their Mixture R508B,” Journal of Chemical & Engineering Data, 59: 3907-3911, 2014.##
[14]. Babaee S., Hashemi H., Mohammadi A. H., Naidooa P. and Ramjugernath D., “Kinetic and thermodynamic behaviour of CF 4 clathrate hydrates,” The Journal of Chemical Thermodynamics, Vol. 81, pp. 52-59, Feb. 2015.##
[15]. Hashemi H., Babaee S., Mohammadi A. H., Naidooa P. and Ramjugernath D., “Experimental study and modeling of the kinetics of refrigerant hydrate formation,” The Journal of Chemical Thermodynamics, Vol. 82, pp. 47-52, March 2015.##
[16]. Hashemi H., Babaee S., Mohammadi A. H., Naidooa P. and Ramjugernath D., “Clathrate hydrate dissociation conditions of refrigerants R404A, R406A, R408A and R427A: experimental measurements and thermodynamic modeling,” The Journal of Chemical Thermodynamics, Vol. 90, pp. 193-198, Nov. 2015,.##
[17]. Tumba K., Hashemi H., Naidoo P., Mohammadi A. H., and Ramjugernath D., “Dissociation data and thermodynamic modeling of clathrate hydrates of ethene, ethyne and propene,” Journal of Chemical & Engineering Data, 58, pp. 3259-3264, Oct. 25 2013.##
[18]. Tumba K., Naidoo P., Mohammadi A. H., RichonD. and Ramjugernath D., “Phase equilibria of clathrate hydrates of Ethane + Ethene,” Journal of Chemical & Engineering Data, 59: 896-901, 2013.##
[19]. Tumba K., S. Babaee P. Naidoo, Mohammadi A. H. and Ramjugernath D., “Phase equilibria of clathrate Hydrates of Ethyne + Propane,” Journal of Chemical & Engineering Data, 59, pp. 2914-2919, Aug. 18, 2014.##
[20]. Tumba, K., H. Hashemi, P. Naidoo, Mohammadi A. H. and Ramjugernath D., “Phase equilibria of clathrate Hydrates of Ethyne + Propene,” Journal of Chemical & Engineering Data, 60, pp. 217-221, March 7, 2014.##
[21]. Ganji H., Manteghian M., Omidkhah M. and Mofrad H. R., “Effect of Different Surfactants on Methane Hydrate Formation Rate, Stability and Storage Capacity,” Fuel, Vol. 86, Issue 3, pp. 434-441, Febr. 2007.##
[22]. Ganji H., Manteghian M. and Mofrad H. R., “Effect of mixed compounds on methane hydrate formation and dissociation rates and storage capacity,” Fuel Processing Technology, Vol. 88, pp. 891-895, 2007.##
[23]. Mohammadi A., Manteghian M., Haghtalab A., Mohammadi A. H. and Rahmati-Abkenar M., “Kinetic study of carbon dioxide hydrate formation in presence of silver nanoparticles and SDS,” Chemical Engineering Journal, Vol. 237, pp. 387-395, Febr. 2014.##
[24]. Delahaye A., L. Fournaison S. Marinhas and and Chatti I., “Effect of THF on equilibrium pressure and dissociation enthalpy of CO2 hydrates applied to secondary refrigeration,” Industrial & Engineering Chemistry Research, 45, pp. 391-397, Nov. 8 2006.##
[25]. Jager M., De Deugd R., Peters C., de Swaan Aronsa J. and Sloan E. D., “Experimental determination and modeling of structure II hydrates in mixtures of Methane + Water + 1, 4-dioxane,” Fluid Phase Equilibria, Vol. 165, Issue 2, pp. 209-223, 25 Nov. 1999.##