Experimental Investigation and Modeling the Effect of CO2 and Rich Gas on the Kinetics of Asphaltene Precipitation from Live Oil

Document Type : Research Paper

Authors

1 Chemical Engineering Department, Tarbiat Modares University(TMU), Tehran, Iran

2 Reservoir Rock & Fluid Technology and Research Group, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

Abstract

Asphaltene precipitation from reservoir fluids during oil production is a serious problem resulting in plugging of the formation, wellbore and production facilities. Generally, asphaltene precipitation has only been investigated from thermodynamic approach in literature, and it assumed that precipitation is relatively fast and has no kinetik effects. Without a good understanding of the associated kinetic effects during the precipitation of asphaltenes, the thermodynamic models can provide misleading predictions for asphaltene stability. So, it should be analyzed from two points of view, thermodynamic and kinetics stability. In this study a molar rich gas and CO2 programmed titration technique was used to evaluate the kinetics of gas-induced asphaltene precipitation from Iranian reservoir oil under isothermal and isobaric initial reservoir conditions in a solids detection system (SDS) and with kinetics of polymerization assumption for reaction between asphaltene and gas, the kinetics parameters of reaction is determined. The results show that asphaltene precipitation occurs in 0.9 mol of rich gas and 0.3 mol of CO2 injected per one mol of reservoir oil. Also, the reaction order of CO2 & rich gas is 2.7 times more than reaction order of asphaltene. So in gas injection, the rate of asphaltene precipitation is highly dependant to the volume of gas.
 

Keywords


[1]. Hammami A., Ratulowski J., Mullins O., Sheu E. and Marshall A., “Asphaltenes, heavy oils, and petroleomics,” New York, Springer, 2007.##
[2]. Islam M. R. “Role of asphaltene on oil recovery and mathematical modeling of asphaltene properties,” In: T. F. Yen & G. V. Chilingarian(eds.), Asphaltene and Asphalts, Amsterdam, Elsevier Science BV, pp. 249-298, 1994.##
[3]. Kokal S. L. and Sayegh S. G., “Asphaltenes: the cholesterol of petroleum,” SPE 29787, Middle East Oil Show, Bahrain, 1995.##
[4]. Angle C. W., Long Y., Hamza H. and Lue L., “Precipitation of asphaltenes from solvent-diluted heavy oil and thermodynamic properties of solvent-diluted heavy oil solutions,” Fuel, Vol. 85, No. 4, pp. 492-506, 2006.##
[5]. Maqbool T., Balgoa A. T. and Fogler H. S., “Revisiting asphaltene precipitation from crude oils: a case of neglected kinetic effects,” Energy Fuels, Vol. 23, No. 7, pp. 3681-3686, 2009.##
[6]. Seifried C. M., Crawshaw J. and Boek E. S., “Kinetics of asphaltene aggregation in crude oil studied by confocal laser-scanning microscopy,” Energy Fuels, Vol. 27, No. 4, pp. 1865-1872, 2013.##
[7]. سلیمانی نظر، ع. "بررسی سینتیکی پدیده تشکیل آسفالتین با استفاده از تکنیک اسپکتروسکوپی مادون قرمز نزدیک،" یازدهمین کنگره ملی مهندسی شیمی ایران، دانشگاه تربیت مدرس، تهران، 1385.##
[8]. Hamedi Rad M., Tavakolian M., Najafi I., Ghazanfari M. H., Taghikhani V. and Amani M., “Modeling the kinetics of asphaltene flocculation in toluene- pentane systems for the case of sonicated crude oils,” Scientia Iranica, Vol. 20, No. 3, pp. 611-616, 2013.##
[9]. Najafi I., Mousavi S. M. R., Ghazanfari M. H., Ghotbi C., Ramazani A., Kharrat R. and Amani M., “Quantifying the role of ultrasonic wave radiation on kinetics of asphaltene aggregation in a toluene- pentane mixture,” Pet. Sci. Technol., Vol. 29, No. 9, pp. 966-974, 2011.##
[10]. Ekholm P., Blomberg E., Claesson P., Auflem I. H., Sjoblom J. and Kornfeldt A., “A quartz crystal microbalance study of the adsorption of asphaltenes and resins onto a hydrophilic surface,” J. Colloid and Interface Sci., Vol. 247, pp. 342-350, 2002.##
[11]. Xie K. and Karan K., “Kinetics and thermodynamics of asphaltene adsorption on metal surfaces: a preliminary study,” Energy & Fuels, Vol. 19, pp. 1252-1260, 2005.##
[12]. میرزایی، ب.، نقدی شایان ن. و موسوی دهقانی س. ع. "بررسی آزمایشگاهی و مدل‏سازی سینتیک جذب آسفالتین روی نانوذره اکسید آهن سنتزشده،" فصلنامه پژوهش نفت، شماره 82، صفحات 132-141، 1394.##
[13]. Ibrahim H. H. and Idem R. O., “Correlations of characteristics of saskatchewan crude oils/asphaltenes with their asphaltenes precipitation behavior and inhibition mechanisms: differences between CO2- and n-heptane-induced asphaltene precipitation,” Energy Fuels, Vol. 18, No. 5, pp. 1354-1369, 2004.##
[14]. Idem R. O. and Ibrahim H. H., “Kinetics of CO2-induced asphaltene precipitation from various saskatchewan crude oils during CO2 miscible flooding,” J. Pet. Sci. Eng., Vol. 35, No. 3-4, pp. 233-246, 2002.##
[15]. Ibrahim H. H. and Idem R. O., “A method for evaluating the kinetics of n-heptane-induced asphaltene precipitation from various saskatchewan crude oils during light hydrocarbon flooding,” Fuel, Vol. 84, No. 2-3, pp. 311-314, 2005.##
[16]. Sato S. and Takanohashi T., “Comparison of the average molecular weights of heavy hydrocarbons determined using GPC, LD/MS, and LC/MS,” Prep. Pap. Am. Chem. Soc., Div. Fuel Chem., Vol. 49 No. 2, pp. 485-486, 2004.##
[17]. Yarranton H. W. and Masliyah J. H., “Molar mass distribution and solubility modeling introduction of asphaltenes,” AIChE Journal, Vol. 42, No. 12, pp. 3533-3543, 1996.##
[18]. Span R. and Wagner W., “A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100K at pressures up to 800 MPa,” J. Phys. Chem. Ref. Data., Vol. 25, No. 6, pp.##