The Amount of Gas Consumed in the Process of Hydrate Formation for the Systems of Water + Carbon Dioxide and Water + TBAF + Carbon Dioxide

Document Type : Research Paper

Authors

1 Department of Chemical Engineering, University of Bojnord, Iran

2 Department of Chemical Engineering, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran

3 Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

Abstract

According to Kyoto protocol, carbon dioxide is one of the six large greenhouse gases which causes global warming. Therefor it is very important to prevent it from entering the atmosphere. The  gas hydrate technology is one of the newest methods of carbon dioxide separation, but slow kinetics of this technology is one of the major obstacles to industrialize the process. The induction time of carbon dioxide hydrate formation and the amount of gas have been consumed for the systems of water + carbon dioxide and water + TBAF + carbon dioxide were measured in this research. The experiments were done in a 169 cm3 batch reactor and at temperature 278.15 K and initial pressure 3.8 MPa. Utilization of 5 wt% TBAF decreases the induction time of hydrate formation from 73 min to 0.9 min. The amount of carbon dioxide consumed within 40 min and 350 min of experiments was measured and reported. Utilization of 1, 4, and 5 wt% TBAF within 40 min of experiments increase the amount of carbon dioxide consumed 18.5% ,39.3%, and 71.9%, respectively.
 

Keywords


[1]. Peng P. and Zhuang Y., “The evaluation and comparison of carbon dioxide capture technologies applied to FCC flue gas”, in Advanced Materials Research, Trans Tech Publ, 2012.##
[2]. Kuramochi T., Ramírez A., Turkenburg W. and Faaij A., “Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes”, Progress in energy and combustion science, Vol. 38(1): pp. 87-112. 2012.##
[3]. Chakma A., “CO2 capture processes—opportunities for improved energy efficiencies”, Energy conversion and management, Vol. 38: pp. S51-S56. 1997.##
[4]. Gray M., Soong Y., Champagne K., Baltrus J., Stevens R., Toochinda P. and Chuang S., “CO2 capture by amine-enriched fly ash carbon sorbents”, Separation and Purification Technology, Vol. 35(1): pp. 31-36. 2004.##
[5]. Kohl AL. and Nielsen R. B., “Gas purification”, 50th ed., 1997, Gulf Professional Publishing: Houston.
[6]. Baker R. W., “Future directions of membrane gas separation technology”, Industrial & Engineering Chemistry Research, Vol. 41(6): pp. 1393-1411. 2002.##
[7]. Carrol J., “Natural gas hydrates: a guide for engineers”, Elsevier Inc., UK. 2009.##
[8]. Sloan D., “Natural gas hydrates in flow assurance”, Gulf Professional Publishing: Boston. pp. 1-11, 2011.##
[9]. Sloan J. E. D. and Koh. K. A., “Clathrate hydrates of natural gases”, 3rd ed. CRC Press, Taylor & Francis Group, 2008.##
[10]. Delahaye A., Fournaison L., Marinhas S., Chatti I., Petitet JP., Dalmazzone D. and Fürst W., “Effect of THF on Equilibrium Pressure and Dissociation Enthalpy of CO2 Hydrates Applied to Secondary Refrigeration”, Industrial & engineering chemistry research, Vol. 45(1): pp. 391-397. 2006.##
[11]. Jager M., DeDeugd R., Peters C., deSwaanArons J. and Sloan E., “Experimental determination and modeling of structure II hydrates in mixtures of methane+ water+ 1, 4-dioxane”. Fluid Phase Equilibria,  Vol. 165(2): pp. 209-223. 1999.##
[12]. Manteghian M., Mousavi Safavi SM. and Mohammadi A., “The equilibrium conditions, hydrate formation and dissociation rate and storage capacity of ethylene hydrate in presence of 1,4-dioxane”, Chemical Engineering Journal,  Vol. 217(0): pp. 379-384. 2013.##
[13]. Papadimitriou N. I., Tsimpanogiannis I. N., Stubos A. K., Martín A., Rovetto L. J., Florusse L. J. and Peters C. J., “Experimental and computational investigation of the sII binary He− THF hydrate”, The Journal of Physical Chemistry B, Vol. 115(6): pp. 1411-1415. 2011.##
[14].  Strobel TA., Taylor C. J., Hester K. C., Dec S. F., Koh C. A., Miller K. T. and Sloan E., “Molecular hydrogen storage in binary THF-H2 clathrate hydrates”, The Journal of Physical Chemistry B,  Vol. 110(34): pp. 17121-17125. 2006.##
[15]. Sun C. Y. Chen G. J. and Zhang L. W., “Hydrate phase equilibrium and structure for (methane+ ethane+ tetrahydrofuran+ water) system”, The Journal of Chemical Thermodynamics, Vol. 42(9): pp. 1173-1179. 2010.##
[16]. Zhang B. and Wu Q., “Thermodynamic promotion of tetrahydrofuran on methane separation from low-concentration coal mine methane based on hydrate”, Energy & Fuels, Vol. 24(4): pp. 2530-2535. 2010.##
[17]. Lu T., Zhang Y., Li X., Chen Z. y. and Yan K. f., “Equilibrium conditions of hydrate formation in the systems of CO2-N2-TBAB and CO2-N2-THF”, The Chinese Journal of Process Engineering, Vol. 3: p. 023. 2009.##
[18].  Zhang B., Wu Q. and ZHU Y. m, “Effect of THF on the thermodynamics of low-concentration gas hydrate formation”, Journal of China University of Mining & Technology, Vol. 38(2): pp. 203-208. 2009.##
[19]. Zhao J., Zhao Y. and Shi D., “Experiment on methane concentration from oxygen-containing coal bed gas by THF solution hydrate formation”, Journal of China Coal Society, Vol. 12: p. 019. 2008.##
[20]. Zhang L. W., Huang Q., Sun C. Y., Ma Q. L. and Chen G. J., “Hydrate formation conditions of methane+ ethylene+ tetrahydrofuran+ water systems”, Journal of Chemical & Engineering Data, Vol. 51(2): pp. 419-422. 2006.##
[21].  Fowler D., Loebenstein W., Pall D. and Kraus C. A., “Some unusual hydrates of quaternary ammonium salts”, Journal of the American Chemical Society,  Vol. 62(5): pp. 1140-1142. 1940.##
[22]. Belandria V., Mohammadi A. H., Eslamimanesh A., Richon D., Sanchez-Mora M. F. and Galicia Luna L. A., “Phase equilibrium measurements for semi-clathrate hydrates of the (CO2 + N2 + tetra-n-butylammonium bromide) aqueous solution systems: Part 2”, Fluid Phase Equilibria,  Vol. 322: pp. 105-112. 2012.##
[23]. Mohammadi A., Manteghian M. and Mohammadi A. H., “Dissociation data of semiclathrate hydrates for the systems of tetra-n-butylammonium fluoride (TBAF)+ methane+ water, TBAF+ carbon dioxide+ water, and TBAF+ nitrogen+ water”, Journal of Chemical & Engineering Data,  Vol. 58(12): pp. 3545-3550. 2013.##
[24]. Mohammadi A., Manteghian M. and Mohammadi A. H., “Phase equilibria of semiclathrate hydrates for methane+ tetra n-butylammonium chloride (TBAC), carbon dioxide+ TBAC, and nitrogen+ TBAC aqueous solution systems”, Fluid Phase Equilibria, Vol. 381: pp. 102-107. 2014.##
[25]. Mohammadi A. H., Eslamimanesh A., Belandria V. and Richon D., “Phase equilibria of semiclathrate hydrates of CO2, N2, CH4, or H2+ tetra-n-butylammonium bromide aqueous solution”, Journal of Chemical & Engineering Data, Vol. 56(10): pp. 3855-3865. 2011.##
[26]. Mohammadi A. H., Eslamimanesh A., Belandria V., Richon D., Naidoo P. and Ramjugernath D., “Phase equilibrium measurements for semi-clathrate hydrates of the (CO2 + N2 + tetra-n-butylammonium bromide) aqueous solution system”, The Journal of Chemical Thermodynamics, Vol. 46: pp. 57-61. 2012.##
[27]. Mohammadi A. H. and Richon D., “Phase equilibria of semi-clathrate hydrates of tetra-n-butylammonium bromide+ hydrogen sulfide and tetra-n-butylammonium bromide+ methane”, Journal of Chemical & Engineering Data, Vol. 55(2): pp. 982-984. 2009.##
[28]. Ganji H., Manteghian M. and Rahimi Mofrad H., “Effect of mixed compounds on methane hydrate formation and dissociation rates and storage capacity”, Fuel Processing Technology,  Vol. 88(9): pp. 891-895. 2007.##
[29]. Ganj H., Manteghian M., Sadaghiani zadeh K., Omidkhah M. R. and Rahimi Mofrad H., “Effect of different surfactants on methane hydrate formation rate, stability and storage capacity”, Fuel, Vol. 86(3): pp. 434-441. 2007.##
[30]. Kumar A., Sakpal T., Linga P. and Kumar R., “Influence of contact medium and surfactants on carbon dioxide clathrate hydrate kinetics”, Fuel, Vol. 105(0): pp. 664-671. 2013.##
[31]. Lirio CFdS., Pessoa F. L. P. and Uller A. M. C., “Storage capacity of carbon dioxide hydrates in the presence of sodium dodecyl sulfate (SDS) and tetrahydrofuran (THF)”, Chemical Engineering Science, Vol. 96(0): pp. 118-123. 2013.##
[32]. Zhang J. S., Lee S. and Lee J. W., “Kinetics of methane hydrate formation from SDS solution”, Industrial & Engineering Chemistry Research, Vol. 46(19): pp. 6353-6359. 2007.##
[33]. Torré J. P., Dicharry C., Ricaurte M., Daniel David D. and Broseta D., “CO2 capture by hydrate formation in quiescent conditions: In search of efficient kinetic additives”, Energy Procedia, Vol. 4(0): pp. 621-628. 2011.##
[34]. Zhang C. S., Fan S. S., Liang D. Q. and Guo K. H., “Effect of additives on formation of natural gas hydrate”, Fuel, Vol. 83(16): pp. 2115-2121. 2004.##
[35]. Mohammadi A., Manteghian M., Haghtalab A., Mohammadi A. H. and Rahmati Abkenar M., “Kinetic study of carbon dioxide hydrate formation in presence of silver nanoparticles and SDS”, Chemical Engineering Journal, Vol. 237: pp. 387-395. 2014.##
[36] مرادی م.، احمدی ا.، نظری خ.، قطبی س.، و خانی و. ت.، “مطالعه آزمایشگاهی و مدل‌سازی سینتیکی تشکیل هیدرات کربن دی اکسید در حضور مایعات یونی”، پژوهش نفت، شماره. 72: ص. 22-29. 1391.##
[37]. Mekala P., Busch M., Mech D., Patel R. S. and Sangwai J. S., “Effect of silica sand size on the formation kinetics of CO2 hydrate in porous media in the presence of pure water and seawater relevant for CO2 sequestration”, Journal of Petroleum Science and Engineering, Vol. 122: pp. 1-9. 2014.##