The Effect of Pressure on Induction Time and the Amount of Methane Consumed During Hydrate Formation Process for the System of Water + TBAC + Methane

Document Type : Research Paper

Authors

1 Department of Chemical Engineering, University of Bojnord, Iran

2 Department of Chemical Engineering, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran

3 Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

Abstract

Induction time and the amount of gas consumed, two important kinetic parameters in gas hydrate formation process, were investigated for the systems of water + methane and water + TBAC + methane, in this research. In order to study the effect of TBAC on the kinetics of methane hydrate formation, three aqueous solutions of TBAC with concentrations of (0, 3, and 5) wt% were prepared. The experiments were carried out (or done) in a 169 cm3 batch reactor and at a temperature of 278.15 K and initial pressures of (6.5 and 8) MPa. The results showed that adding TBAC decreases the induction time of hydrate formation process. The utilization of TBAC with concentration of 3 wt% at 8 MPa decreases the induction time from 437 min to 3 min and increases the amount of gas consumed during hydrate formation %47.09, compared to pure water. The experimental results showed that by increasing the pressure form 6.5 MPa to 8 MPa, the induction time of methane hydrate formation decreases, and the amount of methane consumed increases. In addition, by increasing the pressure form 6.5 MPa to 8 MPa in aqueous solution of TBAC with concentration of 3 wt%, the induction time decreases from 41 min to 4.12 min and the amount of methane consumed increases from 20.98 mmol/mol of solution to 28.29 mmol/mol of solution

Keywords


[1]. Børrehaug A. and Gudmundsson J., “Gas transportation in hydrate form,” Eurogas, Vol. 96: pp. 3-5. 1996.##
[2]. Gudmundsson J. and Borrehaug A., “Natural gas hydrate-an alternative to liquefied natural gas?”. Petroleum Review, Vol. 50(592): p. 232. 1996.##
[3]. Gudmundsson J. S., Mork M., and Graff O. F. “Hydrate non-pipeline technology,” in Proc. 4th Intl. Conf. Gas Hydrates, Yokohama, Japan, Tokyo: Keio University. 2002.##
[4]. Javanmardi J., Nasrifar K., Najibi S., and Moshfeghian M., “Economic evaluation of natural gas hydrate as an alternative for natural gas transportation,” Applied Thermal Engineering, Vol. 25(11): pp. 1708-1723. 2005.##
[5]. Kohl A. L. and Nielsen R. B., “Gas Purification (Fifth Edition),” 1997, Gulf Professional Publishing: Houston.##
[6]. Nakajima Y., Takaoki T., Ohgaki K., and Ota S. “Use of hydrate pellets for transportation of natural gas-II-proposition of natural gas transportation in form of Hydrate pellets,” in Proc. 4th Int. Conf. Gas Hydrates. 2002.##
[7]. Sloan D., “Natural gas hydrates in flow assurance,” Gulf Professional Publishing: Boston. pp. 1-11, 2011.##
[8]. Sloan J. E. D. and Koh K. A., “Clathrate hydrates of natural gases,” 3rd ed., CRC Press, Taylor & Francis Group, 2008.##
[9]. Brown T. D., Taylor C. E., and Bernardo M., “New natural gas storage and transportation capabilities utilizing rapid methane hydrate formation techniques,” National Energy Technology Laboratory-In-house Research; National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States), 2010.##
[10]. Bybee K., “Gas-hydrate production for natural-gas storage and transportation,” Journal of Petroleum Technology, Vol. 57(11): pp. 73-74. 2005.##
[11]. Di Profio P., Arca S., Germani R., and Savelli G., “Novel nanostructured media for gas storage and transport: clathrate hydrates of methane and hydrogen,” Journal of Fuel Cell Science and Technology, Vol. 4(1): pp. 49-55. 2007.##
[12]. Kim N. J., Lee J. H., Cho Y. S., and Chun W., Formation enhancement of methane hydrate for natural gas transport and storage, Energy, Vol. 35(6): pp. 2717-2722. 2010.##
[13]. Mohammadi A., Manteghian M., Haghtalab A., Mohammadi A. H., and Rahmati Abkenar M., “Kinetic study of carbon dioxide hydrate formation in presence of silver nanoparticles and SDS,” Chemical Engineering Journal,  Vol. 237: pp. 387-395. 2014.##
[14]. Mohammadi, A., Manteghian, M., and Mohammadi, A.H., “Dissociation data of semiclathrate hydrates for the systems of tetra-n-butylammonium fluoride (TBAF)+ methane+ water, TBAF+ carbon dioxide+ water, and TBAF+ nitrogen+ water,” Journal of Chemical & Engineering Data,  Vol. 58(12): pp. 3545-3550. 2013.##
[15]. Zhang C. S., Fan S. S., Liang D. Q., and Guo K. H., “Effect of additives on formation of natural gas hydrate,” Fuel, Vol. 83(16): pp. 2115-2121. 2004.##
[16]. Kang S. P., Lee H., Lee C. S., and Sung W. M., “Hydrate phase equilibria of the guest mixtures containing CO2, N2 and tetrahydrofuran,” Fluid Phase Equilibria, Vol. 185(1–2): pp. 101-109. 2001.##
[17]. Seo Y., Kang S.-P., Lee S., and Lee H., “Experimental measurements of hydrate phase equilibria for carbon dioxide in the presence of THF, propylene oxide, and 1,4-Dioxane,” Journal of Chemical & Engineering Data, Vol. 53(12): pp. 2833-2837. 2008.##
[18]. Zhang L. W., Chen G. J., Guo X. Q., Sun C. Y., and Yang L. Y., “The partition coefficients of ethane between vapor and hydrate phase for methane + ethane + water and methane + ethane + THF + water systems,” Fluid Phase Equilibria, Vol. 225: pp. 141-144. 2004.##
[19]. Manakov A. Y., Goryainov S. V., Kurnosov A. V., Likhacheva A. Y., Dyadin Y. A., and Larionov E. G., “Clathrate nature of the high-pressure tetrahydrofuran hydrate phase and some new data on the phase diagram of the tetrahydrofuran−water system at pressures up to 3 GPa,” The Journal of Physical Chemistry B, Vol. 107(31): pp. 7861-7866. 2003.##
[20]. Delahaye A., Fournaison L., Marinhas S., Chatti I., Petitet J. P., Dalmazzone D., and Fürst W., “Effect of THF on equilibrium pressure and dissociation enthalpy of CO2 hydrates applied to secondary refrigeration,” Industrial & Engineering Chemistry Research, Vol. 45(1): pp. 391-397. 2006.##
[21]. Mohammadi A. H., Eslamimanesh A., Belandria V., Richon D., Naidoo P., and Ramjugernath D., “Phase equilibrium measurements for semi-clathrate hydrates of the (CO2 + N2 + tetra-n-butylammonium bromide) aqueous solution system,” The Journal of Chemical Thermodynamics, Vol. 46: pp. 57-61. 2012.##
[22]. Zhang B., Wu Q., and ZHU Y. m., “Effect of THF on the thermodynamics of low-concentration gas hydrate formation,” Journal of China University of Mining & Technology, Vol. 38(2): pp. 203-208. 2009.##
[23]. Li S., Fan S., Wang J., Lang X., and Wang Y., “Semiclathrate hydrate phase equilibria for CO2 in the presence of tetra-n-butyl ammonium halide (bromide, chloride, or fluoride),” Journal of Chemical & Engineering Data, Vol. 55(9): pp. 3212-3215. 2010.##
[24]. Kamran Pirzaman A., Pahlavanzadeh H., and Mohammadi A. H., “Hydrate phase equilibria of furan, acetone, 1, 4-dioxane, TBAC and TBAF,” The Journal of Chemical Thermodynamics, Vol. 64: pp. 151-158. 2013.##
[25]. Mohammadi A. H., Eslamimanesh A., Belandria V., and Richon D., “Phase equilibria of semiclathrate hydrates of CO2, N2, CH4, or H2+ tetra-n-butylammonium bromide aqueous solution,” Journal of Chemical & Engineering Data, Vol. 56(10): pp. 3855-3865. 2011.##
[26]. Mohammadi A., Manteghian M., and Mohammadi A. H., “Phase equilibria of semiclathrate hydrates for methane+ tetra n-butylammonium chloride (TBAC), carbon dioxide+ TBAC, and nitrogen+ TBAC aqueous solution systems,” Fluid Phase Equilibria, Vol. 381: pp. 102-107. 2014.##
[27]. Makino T., Yamamoto T., Nagata K., Sakamoto H., Hashimoto S., Sugahara T., and Ohgaki K., “Thermodynamic stabilities of tetra-n-butyl ammonium chloride+ H2, N2, CH4, CO2, or C2H6 semiclathrate hydrate systems,” Journal of Chemical & Engineering Data, Vol. 55 (2): pp. 839-841. 2009.##
[28]. Tumba K., Reddy P., Naidoo P., Ramjugernath D., Eslamimanesh A., Mohammadi A. H., and Richon D., “Phase equilibria of methane and carbon dioxide clathrate hydrates in the presence of aqueous solutions of tributylmethylphosphonium methylsulfate ionic liquid,” Journal of Chemical & Engineering Data, Vol. 56(9): pp. 3620-3629. 2011.##
[29]. Babaee S., Hashemi H., Mohammadi A. H., Naidoo P., and Ramjugernath D., “Experimental measurement and thermodynamic modelling of hydrate phase equilibrium conditions for krypton+n-butyl ammonium bromide aqueous solution,” The Journal of Supercritical Fluids, Vol. 107: pp. 676-681. 2016.##
[30]. Belandria V., Mohammadi A. H., Eslamimanesh A., Richon D., Sanchez-Mora M. F., and Galicia Luna L. A., “Phase equilibrium measurements for semi-clathrate hydrates of the (CO2 + N2 + tetra-n-butylammonium bromide) aqueous solution systems: Part 2,” Fluid Phase Equilibria, Vol. 322: pp. 105-112. 2012.##
[31]. Mohammadi A. H., Eslamimanesh A., and Richon D., “Semi-clathrate hydrate phase equilibrium measurements for the CO2 + H2/CH4+ tetra-n-butylammonium bromide aqueous solution system,” Chemical Engineering Science, Vol. 94: pp. 284-290. 2013.##
[32]. Mohammadi A. H. and Richon D., “Phase equilibria of semi-clathrate hydrates of tetra-n-butylammonium bromide+ hydrogen sulfide and tetra-n-butylammonium bromide+ methane,” Journal of Chemical & Engineering Data, Vol. 55(2): pp. 982-984. 2009.
[33]. Ganji H., Manteghian M., and Rahimi Mofrad H., “Effect of mixed compounds on methane hydrate formation and dissociation rates and storage capacity,” Fuel Processing Technology, Vol. 88(9): pp. 891-895. 2007.##
[34]. Ganji H., Manteghian M., Sadaghiani zadeh K., Omidkhah M. R., and Rahimi Mofrad H., “Effect of different surfactants on methane hydrate formation rate, stability and storage capacity,” Fuel, Vol. 86(3). pp. 434-441. 2007.##
[35]. Lirio C. F. d. S., Pessoa F. L. P., and Uller A. M. C., “Storage capacity of carbon dioxide hydrates in the presence of sodium dodecyl sulfate (SDS) and tetrahydrofuran (THF),” Chemical Engineering Science, Vol. 96(0): pp. 118-123. 2013.##
[36] . Mekala P., Busch M., Mech D., Patel R. S., and Sangwai J. S., “Effect of silica sand size on the formation kinetics of CO2 hydrate in porous media in the presence of pure water and seawater relevant for CO2 sequestration,” Journal of Petroleum Science and Engineering, Vol. 122: pp. 1-9. 2014.##
[37]. Zhang J. S., Lee S., and Lee J. W., “Kinetics of methane hydrate formation from SDS solution,” Industrial & Engineering Chemistry Research, Vol. 46(19): pp. 6353-6359. 2007.##
[38]. Arora A., Cameotra S. S., Kumar R., Singh A. K., Kumar P., Balomajumder C., and Laik S. “Role of rhamnolipid: a biosurfactant in methane gas hydrate formation kinetics,” in Proceedings of the First International Conference on Recent Advances in Bioenergy Research. 2016. Springer.##
[39]. Heeschen K. U., Schicks J. M., and Oeltzschner G., “The promoting effect of natural sand on methane hydrate formation: Grain sizes and mineral composition,” Fuel, Vol. 181: pp. 139-147. 2016.##
[40]. Arora A., Cameotra S. S., Kumar R., Balomajumder C., Singh A. K., Santhakumari B., Kumar P., and Laik S., “Biosurfactant as a promoter of methane hydrate formation: thermodynamic and kinetic studies,” Scientific Reports, Vol. 6. 2016.##
[41]. Veluswamy H. P., Wong A. J. H., Babu P., Kumar R., Kulprathipanja S., Rangsunvigit P., and Linga P., “Rapid methane hydrate formation to develop a cost effective large scale energy storage system,” Chemical Engineering Journal, Vol. 290, pp 161-173, 15 April 2016.##
[42]. Kumar A., Sakpal T., Linga P., and Kumar R., “Influence of contact medium and surfactants on carbon dioxide clathrate hydrate kinetics,” Fuel, Vol. 105 (0): pp. 664-671. 2013.##
[43]. Torré J. P., Dicharry C., Ricaurte M., Daniel David D., and Broseta D., “CO2 capture by hydrate formation in quiescent conditions: In search of efficient kinetic additives,” Energy Procedia, Vol. 4(0): pp. 621-628. 2011.##
[44]. Arjang S., Manteghian M., and Mohammadi A., “Effect of synthesized silver nanoparticles in promoting methane hydrate formation at 4.7 MPa and 5.7 MPa,” Chemical Engineering Research and Design, Vol. 91(6): pp. 1050-1054. 2013.##
[45]. Kakati H., Mandal A., and Laik S., “Promoting effect of Al2O3/ZnO-based nanofluids stabilized by SDS surfactant on CH4+C2H6+C3H8 hydrate formation,” Journal of Industrial and Engineering Chemistry, Vol. 35: pp. 357-368. 2016.##
[46]. Park S. S. and Kim N. J., “Multi-walled carbon nano tubes effects for methane hydrate formation,” in The 2nd International Conference on Computer and Automation Engineering (ICCAE). 2010: Singapore. pp. 294 - 297.##
[47]. Yu, Y. S., Zhou S. D., Li X.S., and Wang S.L., “Effect of graphite nanoparticles on CO2 hydrate phase equilibrium,” Fluid Phase Equilibria, Vol. 414: pp. 23-28. 2016.##
[48]. Zhang B. Y., Wu Q., and Sun D. L., Effect of surfactant Tween on induction time of gas hydrate formation,Journal of China University of Mining and Technology, Vol. 18(1): pp. 18-21. 2008.##