TiO2/PVDF Membrane Preparation via Colloidal Precipitation Method

Document Type : Research Paper

Authors

1 Petroleum Refining and Processing Technology Development Division, Research Institute of Petroleum Industry, Tehran, Iran

2 Deputy of Technology and International Affairs, Research Institute of Petroleum Industry, Tehran, Iran

3 Chemical, Polymer and Petrochemical Technology Development Division, Research Institute of Petroleum Industry, Tehran, Iran

Abstract

The main objective of this research is to investigate the effect of surface modification of Polyvinylidene fluoride (PVDF) membrane on its filtration performance and fouling reduction. Considering Titanium dioxide (TiO2) nanoparticles properties in fouling reduction of polymeric membranes and in order to obtain ultrafine and stable nanodispersions on the membrane surface which is the main challenge in this field, composite PVDF/TiO2 ultrafiltration membranes were prepared via phase inversion and colloidal precipitation method. Among various prepared membranes, the PVDF/TiO2 composite membrane using 0.05 g/L of TiO2 in the coagulation bath was selected as the optimum membrane. Roughness reduction of about %24.34 and permeation increase of %15 for the optimum membrane  were obtained.  The result of the fouling analysis of nanocomposite membranes with BSA showed the improved effect of colliudal precipitation method in naoparticle dispersion on the membrane surface and fouling reduction of the prepared membranes. Indeed, the effect of TiO2 nanoparticle addition via colloidal precipitation method on membrane fouling reduction in membrane bioreactors for refinery wastewater treatment was investigated.
 

Keywords

Main Subjects


[1]. Nguyen T., Roddick F. A. and Fan L., “Biofouling of water treatment membranes,” Membranes, Vol. 2, pp. 804-840, 2012.##
[2]. Wang Q., Wang Z., Wang J. and Wu Z., “Antifouling behaviours of PVDF/nano-TiO2 composite membranes revealed by surface energetics and quartz crystal microbalace monitoring,” RSC Adv., Vol. 4, pp. 43990-43998, 2014.##
[3]. Rana D. and Matsuura T., “Surface modifications for antifouling membranes,” Chem. Rev., Vol. 110, pp. 2448–2471, 2010.##
[4]. Kochkodan V., Johnson D. J. and Hilal N., “Ploymeric membranes: Surface modification for minimizing (bio)colloidal fouling,” Adv. Colloid Interface Sci., Vol. 206, pp. 116–140, 2014.##
[5]. Kim J. and Van der Bruggen B., “The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment,” Environ. Pollut., Vol. 158, pp. 2335-2349, 2010.##
[6]. Ng L. Y., Mohammad A. W., Leo C. P. and Hilal N., “Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review,” Desalination, Vol. 308, pp. 15-33, 2013.##
[7]. Damodar R.A., You S.-J. and Chou H., “Study the self-cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes,” J. Hazard. Mater., Vol. 172, pp. 1321-1328, 2009.##
[8]. Wang Q., Wang Z., Wang J. and Wu Z.. “Antifouling behaviours of PVDF/nano-TiO2 composite membranes revealed by surface energetics and quartz crystal microbalace monitoring,” RSC Adv., Vol. 4, pp. 43990-43998, 2014.##
[9]. Song H., Shao J., He Y., Liu B. and Zhong X., “Natural organic matter removal and flux decline with PEG TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis,” J. Membr. Sci., Vol. 405–406, pp. 48-56, 2012.##
[10]. Teow Y.H., Ahmad A. L., Lim J. K. and Ooi B. S., “Preparation and characterization of PVDF/ TiO2 mixed matrix membrane via in situ colloidal precipitation method,” Desalination, Vol 295, pp. 61-69, 2012.##
[11]. Tavakolmoghadam M., RekabdarF., Hemmati M. and Mohammadi T., “Poly(vinylidene fluride) membrane preparation and characterization: Effects of mixed solvents and PEG molecular weight,” J. of Pet. Sci. and Technol., Vol. 6, Isssue 2, pp. 11-12, 2016.##
[12]. Khuble K. C., Feng C. Y. and Matsuura T., “Synthetic polymeric membranes characterization by Atomic Force Microscopy,” Springer Laboratory Manuals in Polymer Science, 2007.##
[13]. Razzaghi M. H., Safekordi A. A., Tavakolmoghadam M., Rekabdar F. and Hemmati M., “Morphological and separation performance study of PVDF/CA blend membranes,” J. Membr. Sci., Vol. 470, pp. 547-557, 2014.##
[14]. Espinasse B. and Bachin P., “On an experimental method to measure critical flux in ultrafiltration,” Desalination, 146, 91-96, 2002.##
[15]. Tiranuntakul M., Jegatheesan V. and Schneider P. A., “Assessment of critical flux in a pilot scale membrane bioreactor,” Bioresour. Technol. Vol. 102, No. 9, pp. 5370-5374, 2011.##
[16]. Tavakolmoghadam M., Mohammadi T., Hemmati M. and Naeimpour F., “Surface modification of PVDF membranes by spuuteded TiO2,” Desalin. Water Treat. J., Vol. 57, No. 8, pp. 3328-3338, 2016.##
[17]. سعیدی م.، غفاریان ح. و فرجپور ص.، "کشش سطحی معیاری برای محاسبه غلظت مؤثر ماده فعال سطحی آنیونی در پایداری سوسپانسیون،" سومین همایش علوم و فناوری مواد فعال سطحی و صنایع شوینده، تهران،1391##
[18]. Le-Clech P. and Jefferson B., “Critical flux determination by the flux-step method in a submerged membrane bioreactor.” J. Membr. Sci., Vol. 227, pp. 81-93, 2003.##
[19]. Zhu B., Hu Y., Kennedy S., Milne N., Morris G., Jin W., Gray S. and Duke M., “Dual function filtration and catalytic breakdown of organic pollutants in wastewater using ozonation with titania and alumina membranes,” J. Membr. Sci. Vol. 378, Issue 1-2, pp. 61-72, 2011.##
[20]. Kim J. and Van der Bruggen B., “The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment,” Environ. Pollut., Vol. 158, Issue 7, pp. 2335-2349, 2010.##
[21]. Porter D.D. and Maurer P. H., “Modified bovine serum albumin, the effect of ultraviolet irradiation on the immunochemical properties”, Photochem. Photobiol. Vol. 1, No. 2, pp. 91-96,1962.##
[22]. Weiying L., Sun X., Wen C., Lu H. and Wang Z., “Preparation and characterization of poly(Vinylidene fluoride)/ TiO2 hybrid membranes,” Front. Environ. Sci. Eng. Vol. 7, pp. 492–502, 2013.##
[23]. Shawabkeh R.A., Khashman O. and Bisharat G., “Photocatalytic degradation of phenol using Fe-TiO2 by different illumination Sources,” Int. J. Chem., Vol. 2, No. 2, pp. 10-18, 2010.##
[24]. Lifongo L. L., Bowden D. J. and Brimblecombe P., “Photodegradation of haloacetic acids in water,” Chemosphere, Vol. 55, No. 3, p. 467, 2004.##
[25]. Gondal M. A. and Seddigi Z., Laser-induced photo-catalytic removal of phenol using n-type WO3 semiconductor catalyst,Chem. Phys. Let., Vol. 417, Issue 1-3, p. 124, 2006 .##