Drill String Torque Signal Detection for Stuck Pipe Analysis

Document Type : Research Paper

Authors

1 Drilling & Well completion Technologies Research Group, Petroleum Engineering Research Division, Upstream Technologies Research Center, Research Institute of Petroleum Industry

2 Faculty of Computers and Information Technology Engineering, Shahrood University of Technology, Iran

Abstract

The stuck pipe is one of the most important problems that it is costly and time consuming in drilling. Studies show that the parameters such as torque and the structure of the ground during drill operation are effective in the stuck pipe. Experience has shown that the torque suddenly rises in the moment of stuck, and drill bit rotates (rotation per minute RPM) get more slowly. Because this approach has many weaknesses with regard to the possibility to human mistakes and lack sufficient precision, thus, by detecting torque and rotation per minute spikes, the stuck moment can be detected. Various methods have been introduced to spike detection in the proposed method. In addition, smooth nonlinear energy operator is used. In this method, signal is detected positive and negative changes. In this study, a method for the detection of positive spike for torque and negative spike for RPM has been introduced. Moreover, it has been shown that the suggested method needs less time for analyzing a signal; therefore, it can be used in the immediately systems.
 

Keywords

Main Subjects


 
[1]. Nybo R., “Efficient drilling problem detection,” PhD Thesis, NTNU, Trondheim, Norway, 2009.##
[2]- منظمی م.، هاشمی ع.، "پیش‌بینی گیررشته حفاری چاه‌های جهت دار یکی از میادین نفتی جنوب غرب ایران با استفاده از شبکه‌های عصبی،" اولین کنفرانس بین‌المللی نفت، گاز، پتروشیمی و نیروگاهی، تهران، 1391. ##
[3]. Arnaout A., “Diagnosing drilling problems using visual analytics of sensors measurements,” Instrumentation and Measurement Technology Conference (I2MTC), IEEE International, 2012.##
[4]- ساسان نژاد الف. و شهبازی خ.، "رویکرد جدید برای تعیین نقطه آزادسازی در هنگام گیر رشته حفاری جهت مانده‌یابی با استفاده از شبکه‌های عصبی،" همایش ملی مهندسی کامپیوتر و توسعه پایدار با محوریت شبکه‌های کامپیوتری، مدل‌سازی و امنیت سیستم‌ها، مشهد، 1392.##
[5]- حصیمی الف.، ردایی ع.، "کاربرد شبکه‌های عصبی در پیش‌بینی گیر لوله‌های حفاری در میدان کیش، " نخستین همایش ملی مهندسی مخازن هیدروکربوری، علوم و صنایع وابسته، تهران، 1391.##
[6].Salminen, K. “Stuck pipe prediction using automated real-time modeling and data analysis,” IADC/SPE Drilling Conference and Exhibition. Society of Petroleum Engineers, 2016.##
[7]. Jia Q., Schmitt D. R., “Effects of formation anisotropy on borehole stress concentrations: implications to drilling induced tensile fractures,” 48th US Rock Mechanics&Geomechanics Symposium. American Rock Mechanics Association, 2014.##
[8]. Jardine S. I., McCann D. P, Barber S. S., “An advanced system for the early detection of sticking pipe,” SPE/IADC Drilling Conference, Society of Petroleum Engineers, 1992.##
[9]. Iversen F., Cayeux E., “Drilling control method and system,” U.S. Patent No. 9, pp. 175,557. November 3, 2015.##
[10]. http://www.drillingformulas.com/stuck-pipe-prevention-book.##
[11]. Nybo R. BjorkeVoll K. S., Rommetveit R., “Spotting a false alarm. integrating experience and real-time analysis with artificial intelligence,” Intelligent Energy Conference and Exhibition. Society of Petroleum Engineers, 2008.##
[12]- قضاوی م. و محمدزاده م.، "تحلیل رفتار دینامیکی مدل المان محدود تماس رشته حفاری- دیواره چاه با استفاده از مدل ارتقاء یافته تماس،" مجله مهندسی مکانیک سنگ، دانشگاه تربیت مدرس، ماهنامه 11، صفحات 1855-1944، سال 2014.##
[13]. Warren, J. E., “Causes, preventions, and recovery of stuck drill pipe,” Drilling and Production Practice, American Petroleum Institute, 1940.##
[14]. Hempkins W. B., “Multivariate statistical analysis of stuck drillpipe situations,” SPE Drilling Engineering, pp. 237-244, 1987.##
[15]. Bradley W. B., “A task force approach to reducing stuck pipe costs,” SPE/IADC Drilling Conference. Society of Petroleum Engineers, 1991.##
[16]. Biegler M. W., Kuhn G. R., “Advances in prediction of stuck pipe using multivariate statistical analysis,” Presented at the SPE/IADC Conference in Dallas. Texas. pp. 15-18, February, 1994.##
[17]. Gokhan Y., “Stuck pipe prevention-a proactive solution to an old problem,” SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2007.##
[18]. Wisnie A. P. and Zhiwei Zh., “Quantifying stuck pipe risk in gulf of mexico oil and gas drilling,” SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1994.##
[19]. Siruvuri C, Nagarakanti S. and Samuel R., “Stuck pipe prediction and avoidance: a conVolutional neural network approach,” IADC/SPE Drilling Conference. Society of Petroleum Engineers, 2006.##
[20]. Poordad S., Chamkalani. A, Shahri M. P., “Support vector machine model: a new methodology for stuck pipe prediction,” SPE Unconventional Gas Conference and Exhibition. Society of Petroleum Engineers, 2013.##
[21]. Naraghi M., Ezzatyar P. and Jamshidi S., “Prediction of drilling pipe sticking by active learning method (alm),” Journal of Petroleum and Gas Engineering, Vol 7, pp. 173-183, 2013.##
[22]. Hegde Ch., Wallace S. and Gray K., “Real time prediction and classification of torque and drag during drilling using statistical learning methods,” SPE Eastern Regional Meeting. Society of Petroleum Engineers, 2015.##
[23]. Bello O., “Application of artificial intelligence methods in drilling system design and operations: a review of the state of the art,” Journal of Artificial Intelligence and Soft Computing Research, Vol 5, pp. 121-139, 2015.##
[24]. Malarvili, M. B., Hassanpour, H., Mesbah, M., Boashash, B, “A histogram-based electroencephalogram spike detection,” In ISSPA, pp. 207-210, 2005.##
[25]. Mukhopadhyay, S, Ray, G. C. “A new interpretation of nonlinear energy operator and its efficacy in spike detection,” IEEE Transactions on Biomedical Engineering ,pp: 180-187, 1998.##
[26]. Hassanpour, H, Mesbah, M, Boashash, B. “Eeg spike detection using time-frequency signal analysis,” Acoustics, Speech, and Signal Processing, Proceedings. (ICASSP›04). IEEE International Conference on. Vol. 5. IEEE, 2004.##
[27]. Kaiser, J. F. “On a simple algorithm to calculate the energy of a signal,” Acoustics, Speech, and Signal Processing, ICASSP-90., International Conference on. IEEE, 1990.##
[28]. Gibson, S, Jack W. J, Markovic, D. “Comparison of spike-sorting algorithms for future hardware implementation,” 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2008.##
[29]. Calvagno, G, “A multiresolution approach to spike detection in eeg,” Acoustics, Speech, and Signal Processing, ICASSP›00. Proceedings, IEEE International Conference on. Vol. 6. IEEE, 2000.##