Laboratory Study of the Effect of Inhibitors on Asphaltene Adsorption on the Reservoir Rock by Experimental Design Method

Document Type : Research Paper

Authors

1 Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran

2 Department of Petroleum Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

One of the major problems in the oil industry is asphaltene adsorption on various surfaces, including the surface of the reservoir rock. The adsorption of asphaltene on the surface of the reservoir›s rock causes wettability change, blockage of cavities and, consequently, reduction of crude oil production. In this study, the addition of inhibitor as an agent to reduce the adsorption of asphaltene has been used. To observe this effect, two inhibitors of coconut diethanol amide and dodecyl benzene sulfonic acid have been used. For statistical analysis and optimization of experiments, Design Expert software and D-Optimal surface design were used. The model results have high creditworthiness. The test design factors included the initial asphaltene formation in the range of 3000-1000 mg.L1-, the weight ratio of asphaltene to the inhibitor 1: 1, 1: 2, 1: 3 and 1: 0 (without inhibitors) and two types inhibitor include Coconut diethanol amide and dodecyl benzyl benzene sulfonic acid. According to the results of the software output, has a 1:2 ratio of the least amount of asphaltene adsorption. Coconut diethanol amide inhibitor also has the greatest effect on reducing asphaltene adsorption. The adsorption range of asphaltene in the absence of an inhibitor is within the range of the initial concentration of asphaltenes between 63/13 and 83/5 mg.g1-, and the addition of inhibitor in the best case can reduce up to 35% adsorption of asphaltenes.
 

Keywords

Main Subjects


[1]. Bouhadda Y., Bormann D., Sheu E., Bendedouch D., Krallafa A., and Daaou M., “Characterization of algerian hassi-messaoud asphaltene structure using Raman spectrometry and X-ray diffraction,” Fuel, Vol.12, pp.1855-1864, 2007.##
[2]. Groenzin H. and Mullins O. C., “Molecular size and structure of asphaltenes from various sources, Energy & Fuels, Vol.3, pp.677-684, 2000.##
[3]. Mousavi-Dehghani S., Riazi M., Vafaie-Sefti M. and Mansoori G., “An analysis of methods for determination of onsets of asphaltene phase separations, Journal of Petroleum Science and Engineering, Vol.2, pp.145-156, 2004. ##
[4]. Xing C., Hilts R. and Shaw J., “Sorption of athabasca vacuum residue constituents on synthetic mineral and process equipment surfaces from mixtures with pentane,” Energy & Fuels, Vol. 4, pp. 2500-2513, 2010.##
[5]. Adams J. J., “Asphaltene adsorption, a literature review,” Energy & Fuels, Vol. 5, pp. 2831-2856, 2014. ##
[6]. de la Cruz J. L.M., Castellanos-Ramírez I. V., Ortiz-Tapia A., Buenrostro-González E., Durán-Valencia C. d. l. A. and López-Ramírez S., “Study of monolayer to multilayer adsorption of asphaltenes on reservoir rock minerals,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 1, pp. 149-154, 2009. ##
[7]. Alboudwarej H., Pole D., Svrcek W. Y. and Yarranton H. W., “Adsorption of asphaltenes on metals,” Industrial & Engineering Chemistry Research, Vol. 15, pp. 5585-5592, 2005. ##
[8]. Ekholm P., Blomberg E., Claesson P., Auflem I. H., Sjoblom J. and Kornfeldt A., “A quartz crystal microbalance study of the adsorption of asphaltenes and resins onto a hydrophilic surface,” J. Colloid Interface Sci., Vol. 2, pp. 342-50, 2002. ##
[9]. Evdokimov I., Eliseev N. Y. and Akhmetov B., “Assembly of asphaltene molecular aggregates as studied by near-UV/visible spectroscopy: I. structure of the absorbance spectrum,” Journal of Petroleum Science and Engineering, Vol. 3, pp. 135-143, 2003. ##
[10]. Marczewski A. W. and Szymula M., “Adsorption of asphaltenes from toluene on mineral surface,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 1, pp. 259-266, 2002. ##
[11]. Östlund J. A., Wattana P., Nydén M. and H. Fogler S., “Characterization of fractionated asphaltenes by UV–vis and NMR self-diffusion spectroscopy,Journal of Colloid and Interface Science, Vol. 2, pp. 372-380, 2004. ##
[12]. Rudrake A., Karan K. and Horton J. H., “A combined QCM and XPS investigation of asphaltene adsorption on metal surfaces, J. Colloid Interface Sci., Vol. 1, pp. 22-31, 2009. ##
[13]. Saraji S., Goual L. and Piri M., “Dynamic adsorption of asphaltenes on quartz and calcite packs in the presence of brine films, Colloids and Surfaces A: Physicochemical and Engineering Aspects, pp. 260-267, 2013. ##
[14]. Szymula M. and A. Marczewski W., “Adsorption of asphaltenes from toluene on typical soils of Lublin region, Applied Surface Science, Vol. 1, pp.3 01-311, 2002. #3
[15]. Jada A. and Debih H., “Hydrophobation of clay particles by asphaltenes adsorption, Composite Interfaces, Vol. 2-3, pp. 219-235, 2009. ##
[16]. Curtis C. W., Jeon Y. W. and Clapp D. J., “Adsorption of asphalt functionalities and oxidized asphalts on aggregate surfaces, Fuel Science & Technology International, Vol. 9, pp. 1225-1268, 1989. ##
[17]. Alkafeef S., Gochin R. and Smith A., “Surface potential and permeability of rock cores under asphaltenic oil flow conditions, in SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. 1995. ##
[18]. Franco C. A., J. Giraldo M. A. Ruiz B. A. Rojano and Cortes F. B., “Kinetic and thermodynamic equilibrium of asphaltenes sorption onto formation rock: evaluation of the wash in the adsorptive properties, Dyna, Vol. 176, pp. 81-89, 2012. ##
[19]. وفایی سفتی م.، شادمان م. م، سعیدی دهاقانی ا. م. و دهقانی‌زاده م.، "بررسی آزمایشگاهی قدرت بازدارنده‌های آسفالتین در پایدارسازی توده‌های آسفالتین با روش ویسکومتری," پژوهش نفت، دوره 25، شماره 82، صفحات 81-71، 1392. ##
[20]. Kumar K., Dao E. and Mohanty K., “AFM study of mineral wettability with reservoir oils, Journal of Colloid and Interface Science, Vol. 1, pp. 206-217, 2005. ##
[21]. TU Y., WOODS J., KUNG J., Mccracken T., Kotlyar L., Sparks B. and Dong M., “Adsorption of SARA Fractions from Heavy oil and Bitumen on Kaolinite, Clay Science, Vol. 2 Supplement, pp. 183-187, 2006. ##
[22]. Acevedo S., Ranaudo M. A., Escobar G., Gutiérrez L. and Ortega P., “Adsorption of asphaltenes and resins on organic and inorganic substrates and their correlation with precipitation problems in production well tubing, Fuel, Vol. 4, pp. 595-598, 1995. ##
[23]. Petroleum I. O., “IP standards for petroleum and Its products: methods for analysis and testing, Vol. 1. 1985. ##
[24]. Rogel E., Leon O., Torres G. and Espidel J., “Aggregation of asphaltenes in organic solvents using surface tension measurements, Fuel, Vol. 11, pp. 1389-1394, 2000. ##
[25]. ویسی س.، وفایی سفتی م.، شادمان م. م. و احمدی ص.، "بررسی پارامترهای مؤثر برجذب آسفالتین از تولوئن روی سطح مواد معدنی لیکا، پرلیت و بنتونیت،" پژوهش نفت، دوره 27، شماره 96-2، صفحات 145-134، 1396. ##
[26]. شادمان م. م، وفایی سفتی م.، سلیمانی م. و سراجیان اردستانی س. ع.، "بررسی آزمایشگاهی اثر بازدارنده‌ها بر پایداری نمونه‌های نفت خام شامل آسفالتین به‌روش طراحی آزمایش،" اکتشاف و تولید نفت و گاز، شماره 128، صفحات 56-51، 1394. ##
[27]. Vafaei S. M., Shadman M. M., Saeedi D. A. H. and Dehaghanizadeh M., “Laboratory investigation of the power of asphaltene inhibitors in stabilizing asphaltene masses by means of viscometry,” Oil Research, Vol. 82, pp. 71-81, 2015. ##