The Laboratory Study of Cementing Effect of Natural Fracture on Hydraulic Fracture Propagation in Unconventional Oil and Gas Reservoirs

Document Type : Research Paper

Author

Department of Mining Engineering, Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

In this study, a series of laboratory tests using a hydraulic fracturing system were conducted to examine the behavior of an induced hydraulic fracture as it approached a cemented natural fracture. To achieve this, sheet-like test specimens were cast with natural fractures of varied mechanical properties, thickness, and relative position to a fluid injection port.  A tendency for the induced hydraulic fracture was shown to cross thick natural fractures filled with softer materials than the host rock and to be diverted by thick natural fractures with harder filling materials. The induced hydraulic fracture also tends to cross hard natural fractures when the natural fractures are relatively thin. In addition, the induced hydraulic fracture from the injection port was shown to be diverted by a thin, hard natural fracture that was placed relatively close to the injection port but crosses the same natural fracture when placed farther away from the injection port. Finally, the results provide a novel evidence of the impact of natural fracture filling materials on the outcome of hydraulic fracture propagation at its interaction with natural fractures.
 

Keywords

Main Subjects


[1]. Laubach S. E., “Practical approaches to identifying sealed and open fractures,” AAPG Bulletin, Vol. 87, No. 4, pp. 561-579, 2003. ##
[2]. Gale J. F. W., Reed R. M. and Holder J., “Natural fractures in the barnett shale and their importance for hydraulic fracture treatments, AAPG Bulletin; Vol. 91, No. 4, pp. 603- 622, 2007. ##
[3]. Blanton T. L., “An experimental study of interaction between hydraulically induced and pre-existing fractures. In SPE unconventional gas recovery symposium, Society of Petroleum Engineers, 1982. ##
[4]. Warpinski N. R. and Teufel L. W., “Influence of geologic discontinuities on hydraulic fracture propagation,” (includes associated papers 17011 and 17074). Journal of Petroleum Technology, Vol. 39, No. 2, pp.209-220, 1987. ##
[5]. Renshaw C. E. and Pollard D. D., “An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle, linear elastic materials, In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 32, No. 3, pp. 237-249, Pergamon, 1995. ##
[6]. Gu H., Weng X., Lund J., Mack M., Ganguly U. and Suarez Rivera R., “Hydraulic fracture crossing natural fracture at nonorthogonal angles: A criterion and its validation, SPE-139984-PA. SPE Production & Operations, Vol. 27, No. 01, pp. 20-26, 2012. ##
[7]. Zhou J., Chen M., Jin Y. and Zhang G. Q., “Analysis of fracture propagation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs, International Journal of Rock Mechanics and Mining Sciences, Vol. 45, No. 7, pp.1143-1152, 2008. ##
[8]. Dehghan A. N., Goshtasbi K., Ahangari K. and Jin Y., “Experimental investigation of hydraulic fracture propagation in fractured blocks, Bulletin of Engineering Geology and the Environment, Vol. 74, No. 3, pp.887-895, 2015. ##
[9]. Dehghan A. N., Goshtasbi K., Ahangari K. and Jin Y., “The effect of natural fracture dip and strike on hydraulic fracture propagation, International Journal of Rock Mechanics and Mining Sciences, Vol. 75, pp. 210-215, 2015. ##
[10]. Dehghan A. N., Goshtasbi K., Ahangari K. and Jin Y., “Mechanism of fracture initiation and propagation using a tri-axial hydraulic fracturing test system in naturally fractured reservoirs, European Journal of Environmental and Civil Engineering, Vol. 20, No. 5, pp. 560-585, 2016. ##
[11]. Dehghan A. N., Goshtasbi K., Ahangari K., Jin Y. and Bahmani A., “3D Numerical modeling of the propagation of hydraulic fracture at its intersection with natural (Pre-existing) fracture,” Rock Mechanics and Rock Engineering, Vol. 50, pp. 367-386, 2017. ##
[12]. دهقان ع ن، گشتاسبی ک، آهنگری ک، جین ی و میسکیمینس ج، "مکانیسم شروع و گسترش شکست با استفاده از یک سیستم آزمایش شکافت هیدرولیکی سه محوره برروی نمونه‌هایی از بلوک‎های سیمانی،" پژوهش نفت، شماره 2-85، زمستان 94.  ##
[13]. دهقان ع ن، خدایی م، "مطالعه آزمایشگاهی تاثیر شکاف‎ از پیش موجود بر گسترش شکافت هیدرولیکی تحت تنش‎های سه محوری واقعی،" پژوهش نفت، شماره 95، مهر و آبان 96. ##
[14]. Gale J. F. W, Laubach S. E., Olson J. E., Eichhubl P. and Fall A., “Natural fractures in shale: a review and new observations, AAPG Bulletin, Vol. 98, No. 11, pp. 2165-2216, 2014. ##
[15]. Fu W., Ames B. C., Bunger A. P. and Savitski A. A., “Impact of partially cemented and nonpersistent natural fractures on hydraulic fracture propagation, Rock Mech Rock Eng, Vol. 49, pp. 4519-4526, 2016. ##
[16]. Bahorich B., Olson J. E., and Holder J., “Examining the effect of cemented natural fractures on hydraulic fracture propagation in hydrostone block experiments,” SPE-160197-MS. SPE Annual Technical Conference and Exhibition, San Antonio, TX, October 8-10, 2012. ##
[17]. ASTM International., “Standard test method for splitting tensile strength of intact rock core specimens, ASTM Standard D3967-08, 2008. ##
[18]. Anderson T. L., “Fracture mechanics fundamentals and applications, third edition. CRC Press, Taylor & Francis Group, 2005. ##