Three-Dimensional Estimation and Modeling of Sediment Thickness on Basement to Explore Hydrocarbon Reserves Using Geophysical Data, Case Study: South of Netherlands

Document Type : Research Paper

Authors

1 Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Iran

2 College of Engineering, Malayer University, Iran

3 Faculty of Sciences, Arak University, Iran

Abstract

Gravity survey has a lot of applications in identifying geological structures which can form and store  hydrocarbons. Also, this method helps the salt dome and dome-shaped uplift masses to be identified. In this paper, the nonlinear inverse modeling approach of gravity data is used to determine the geometry of the basement. In the process of modeling gravity data, a grid is generally approximated by a series of coordinating prisms, and then their thickness is calculated. In order to demonstrate the efficiency of the method, understanding how the method works and its details, the modeling noiseless and noisy gravity data was first performed. At the end, modeling real gravity measurements was performed using data from the South of Netherlands. Finally, the obtained results are in good agreement with the results obtained in the Mirzai thesis. Moreover, all the programs used in this article are provided by the authors in the MATLAB software environment.
 

Keywords

Main Subjects


[1]. Barbosa V. C. F., Silva J. B. and Medeiros W. E., “Gravity inversion of basement relief using approximate equality constraints on depths,” Geophysics, Vol. 62, No. 6, 1745-1757, 1997. ##
[2]. Blakely R. J., “Potential theory in gravity and magnetic applications,”. Cambridge university press,1996. ##
[3]. Chakravarthi V. and Sundararajan N., “3D gravity inversion of basement relief—A depth-dependent density approach,” Geophysics, Vol. 72, No. 2, pp. I23-I32, 2007. ##
[4]. Silva J. B., Oliveira A. S. and Barbosa V. C., “Gravity inversion of 2D basement relief using entropic regularization,” Geophysics, Vol. 75, No. 3, pp. I29-I35, 2010. ##
[5]. Adema G. W., Breckenridge R. M. and Sprenke K. F., “Gravity, morphology, and bedrock depth of the rathdrum prairie, idaho,” Idaho Geological Survey, 2007. ##
[6]. Bohidar R. N., Sullivan J. P. and Hermance J. F., “Delineating depth to bedrock beneath shallow unconfined aquifers: a gravity transect across the Palmer river basin,” Groundwater, Vol. 39, No. 5, pp. 729-736, 2001. ##
[7]. Krimmel R. M., “Gravimetric ice thickness determination, South cascade glacier, washington,” Northwest Science, Vol 44, No 3, pp. 147-153, 1970. ##
[8]. Stern T. A., “Gravity survey of the taylor glacier, victoria land, antarctica,” Antarctic Research Centre, Victoria University of Wellington, 1978. ##
[9]. Venteris E. and Miller M., “Gravitational profiles on the taku glacier system,” Glaciological and Arctic Sciences Institute, University of Idaho, Open File Report, 1993. ##
[10]. متشرعی آ. و زمردیان ح.، "تعیین عمق سنگ‌بستر با استفاده از روش گرانی‌سنجی در منطقه جنوب زاگرس،" مجله ژئوفیزیک ایران، جلد 1، شماره 10، صفحات 61-69، 1386. ##
[11]. متولی عنبران س. ه.، ابراهیم‌زاده اردستانی و.، "تعیین عمق سنگ‌بستر با استفاده از وارون‌سازی غیرخطی دوبعدی داده‌های گرانی‌سنجی،" مجله فیزیک زمین و فضا، دوره 34، شماره 3، صفحات 1-19، 1386. ##
[12]. نجاتی کلاته ع.، ابراهیم‌زاده اردستانی و.، متولی عنبران س. ه.، قمی ش. و جوان ا.، "مدل‌سازی وارون دوبعدی غیرخطی داده‌های گرانی‌سنجی منطقه مغان با استفاده از روش مارکوارت- لونبرگ،" مجله علوم زمین، دوره 74، شماره 19، صفحات 13-20، 1388. ##
[13]. Kennett B. L. N. and Williamson P. R., “Subspace methods for large-scale nonlinear inversion,” In Mathematical Geophysics, pp. 139-154, Springer, Dordrecht, 1988. ##
[14]. Plouff D., “Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections,” Geophysics, Vol. 41, No. 4, pp. 727-741, 1976. ##
[15]. Lelievre P. G. and Oldenburg D. W., “Magnetic forward modelling and inversion for high susceptibility,” Geophysical Journal International, Vol. 166, No. 1, pp. 76-90, 2006. ##
[16]. Sambridge M. S., “Non-linear arrival time inversion: constraining velocity anomalies by seeking smooth models in 3-D,” Geophysical Journal International, Vol. 102, No. 3, pp. 653-677, 1990. ##
[17]. Wang Y. and Houseman G. A., “Inversion of reflection seismic amplitude data for interface geometry,” Geophysical Journal International, Vol. 117, No. 1, pp. 92-110, 1994. ##
[18]. Mirzaei M. and Bredewout J. W., “3-D Microgravity data inversion for detecting cavities,” Eur. J. Environ. Eng. Geophys, Vol. 1, No. 3, pp. 249-270, 1996. ##
[19]. Li Y. and Oldenburg D. W., “3-D inversion of gravity data,” Geophysics, Vol. 63, No. 1, pp. 109-119, 1998. ##
[20]. Farquharson C. G. and Oldenburg D. W., “A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems,” Geophysical Journal International, Vol. 156, No. 3, pp. 411-425, 2004. ##
[21]. Hansen P. C., “Discrete inverse problems: insight and algorithms,” Vol. 7, Siam, 2010. ##
[22]. Oldenburg D. W. and Li Y., “Inversion for applied geophysics: A tutorial,” l. Investigations in Geophysics, Vol. 13, pp. 89-150, 2005. ##
[23]. Mirzaei M., “Inversion of potential field data: theory and applications in gravimetry and magnetometry,” Faculteit Aardwetenschappen, 1996. ##