تثبیت نانوذرات TiO2 برروی آلومیناسیلیکات طبیعی فرآوری شده جهت تولید هیدروژن: ارزیابی اثر فرآوری شیمیایی پایه و شرایط عملیاتی فرآیند

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران

2 مرکز کاتالیست، دانشکده مهندسی شیمی، دانشگاه رازی، کرمانشاه، ایران

10.22078/pr.2020.3827.2743

چکیده

در پژوهش حاضر، فرآیند فتوکاتالیستی شکافت آب برروی نانوذرات تیتانیای تثبیت شده بر پایه زئولیت طبیعی کلینوپتیلولیت و نیز کلینوپتیلولیت فرآوری شده به‌روش تعویض یونی، با هدف پی بردن به اثرات روش فرآوری پایه بر خواص فیزیکی- شیمیایی و عملکردی فتوکاتالیست و نیز بررسی اثر پارامترهای عملیاتی مختلف از جمله زمان، مقدار فتوکاتالیست و pH محلول واکنش انجام شد. به این منظور پس از فرآوری کلینوپتیلولیت به‌روش تعویض یونی، ترکیب تیتانیا- کلینوپتیلولیت فرآوری شده حاوی 10% وزنی TiO2 به‌روش بسیار آسان و ارزان توزیع حالت جامد سنتز گردید. در بررسی خصوصیات فتوکاتالیست سنتز شده از آنالیزهایی همچون XRDا، FESEMا، EDXا، BETا، PL و UV-vis استفاده شد. نتایج آنالیزهای شناسایی، بیانگر تشکیل کلوخه‌های کمتر، توزیع بهتر ذرات TiO2 و برهم‌کنش قوی‌تر بین پایه و فلز بوده که ناشی از مساحت سطح بیشتر و دسترسی بیشتر به میکروکانال‌های زئولیت، بواسطه پایه فرآوری شده، است. توزیع مناسب ذرات TiO2 منجر به افزایش تعداد سایت‌های فعال سطحی و بازده جدایش بیشتر جفت‌های الکترون- حفره شده که در نتیجه آن فعالیت فتوکاتالیستی افزایش می‌یابد. استفاده از کلینوپتیلولیت فرآوری‌شده منجر به افزایش 30% تولید هیدروژن در مقایسه با فتوکاتالیست بر پایه کلینوپتیلولیت خام می‌شود. با بررسی نحوه اثرگذاری پارامترهای عملیاتی، حداکثر مقدار هیدروژن تولیدی (µmol g-1 h-1 74/859) در شرایط بهینه زمان واکنش h 4، pH بازی برابر با 10 و مقدار کاتالیست g/L 1 به‌دست آمد که این میزان در مقایسه با نیمهرسانای TiO2 خالص به‌عنوان نمونه مرجع، حدوداً افزایش دوازده برابری دارد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Immobilization of TiO2 Nanoparticles Over Treated Natural Aluminasilicate for Hydrogen Production: Effect of Support Treatment and Operational Conditions of Process

نویسندگان [English]

  • Rojiar Akbari Sene 1
  • Farhad Rahmani 1
  • Gholamreza Moradi 2
  • Shahram Sharifnia 2
1 Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
2 Catalyst Research Center, Department of Chemical Engineering, Razi University, Kermanshah, Iran
چکیده [English]

In the present research, the photocatalytic water splitting process has been carried out over titania nanoparticles immobilized on parent clinoptilolite and ion exchange-treated clinoptilolite with the aim of understanding the effects of chemical treatment method on the physicochemical properties and performance of catalyst, and assessing the effects of operational parameters including irradiation time, photocatalyst dosage and solution pH. To this aim, 10 wt.% of TiO2 nanoparticles were loaded over zeolitic supports using facile and cost effective solid state dispersion (SSD) method. Moreover, the synthesized photocatalysts were characterized by XRD, FESEM, EDX, BET, PL and UV-vis techniques. The characterization results indicate that less population of surface particle aggregates, a better dispersion of titania particles and stronger metal-support interaction as a result of higher surface area and more accessibility of the zeolite micro-channels were achieved using modified clinoptilolite support. The fine dispersion of TiO2 particles reflects higher surface density of active sites and separation efficiency of electron-hole pairs, which accounts for their better photocatalytic performance. Employing the ion exchange- treated clinoptilolite as support led to 30% increase in the photocatalytic activity of TiO2-treated clinoptilolite for hydrogen evolution compared to that of TiO2-based composite containing the bare clinoptilolite. By assessing the influence of the operational conditions on the efficiency of water splitting, a maximum hydrogen evolution (859.74 µmol g-1 h-1) was obtained with optimum condition set at irradiation time of 4 h, solution pH of 10 and photocatalyst dosage of 1 g L-1, which is about 12 times greater than that of pure TiO2 as the reference sample.
 

کلیدواژه‌ها [English]

  • Hydrogen
  • Solid State Dispersion
  • Ion-exchange
  • Water Splitting
  • Operational Parameters
[1]. Yoong L.S., Chong F. K. and Dutta B. K., “Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light,” Energy, Vol. 34, No. 10, pp. 1652-1661, 2009. ##

[2]. Li H. and Cui X., “A hydrothermal route for constructing reduced graphene oxide/TiO2 nanocomposites: Enhanced photocatalytic activity for hydrogen evolution,” Int. J. Hydrogen Energy, Vol. 39, No. 35, pp. 19877-19886, 2014. ##

[3]. Xu S., Ng J., Du A., Liu J. and Sun D., “Highly efficient TiO2 nanotube photocatalyst for simultaneous hydrogen production and copper removal from water,” Int. J. Hydrogen Energy., Vol. 36, No. 11, pp. 6538-6545, 2011.##

[4]. Xu S., Ng J., Zhang X., Bai H. and Sun D., “Fabrication and comparison of highly efficient Cu incorporated TiO2 photocatalyst for hydrogen generation from water,” Int. J. Hydrogen Energy., Vol. 35, No. 11, pp. 5254-5261, 2010.##

[5]. Long L., Li J. Wu L. and Li X., “Enhanced photocatalytic performance of platinized CdS/TiO2 by optimizing calcination temperature of TiO2 nanotubes,” Mat. Sci. Semicon. Proc., Vol. 26, pp. 107-111, 2014. ##

[6]. Dubey N., Rayalu S., Labhsetwar N. K. and Decotta S., “Visible light active zeolite-based photocatalysts forhydrogen evolution from water,” Int J Hydrogen Energy., Vol. 33, No. 21, pp. 5958-5966, 2008.##

[7]. Kudo A. and Miseki Y., “Heterogeneous photocatalyst materials for water splitting,” Chem. Soc. Rev., Vol. 38, No. 1, pp. 253-278, 2009.##

[8]. Ismail A. A. and Bahnemann D. W., “Photochemical splitting of water for hydrogen production by photocatalysis: A review,” Sol. Energ Mat. Sol. C., Vol. 128, pp. 85-101, 2014. ##

[9]. Kitano M. and Hara M., “Heterogeneous photocatalytic cleavage of water,” J. Mater Chem., Vol. 20, No. 4, pp. 627-641, 2010.

[10]. Navarro R. M., Sanchez M. C., Alvarez-Galvan M. C., Valle F. and Fierro J. L. G., “Hydrogen production from renewable sources: biomass and photocatalytic opportunities,” Energy Environ Sci., Vol. 2, No. 1, pp. 35-54, 2009.##

[11]. Ni M., Leung M. K. H., Leung D. Y. C. and Sumathy K., “A review and recent developments in photocatalytic water-splitting using for hydrogen production,” Renew Sust. Energ. Rev., Vol. 11, No. 3, pp. 401-425, 2007. ##

[12]. Dubey N., Nitin K. L., Sukumar D. and Sadhana S. R., “Hydrogen evolution by water splitting using novel composite zeolite-based photocatalyst,” Catal. Today. Vol. 129, No. 3-4, pp. 428-434, 2007. ##

[13]. Jiang C., Lee K. Y., Parlett C. M. A., Bayazit M. K., Lau C. C., Ruan Q., Moniz S. J. A., Lee A. F. and Tang J., “Size-controlled TiO2 nanoparticles on porous hosts for enhanced photocatalytic hydrogen production,” Appl. Catal. A: Gen., Vol. 521, pp. 133-139, 2016. ##

[14]. Wang C., Shi, H. and Li Y., “Synthesis and characterization of natural zeolite supported Cr-doped TiO2 photocatalysts,” Appl. Surf Sci., Vol. 258, No. 10, pp. 4328-4333, 2012.##

[15]. Sun Q., Hu X., Zheng S., Sun Z., Liu S. and Li H., “Influence of calcination temperature on the structural, adsorption and photocatalytic properties of TiO2 nanoparticles supported on natural zeolite,” Powder Technol., Vol. 274, pp. 88-97, 2015.##

[16]. Chica A., “Zeolites: promised materials for the sustainable production of hydrogen,” ISRN Chem. Eng., Vol. 2013, p. 19, 2013.

[17]. Baerlocher C., Meier W. M. and Olson D. H., “HEU, in Atlas of Zeolite Framework Types,” Elsevier: Amsterdam. pp. 146-147, 2001. ##

[18]. Rahmani F., Haghighi M. and Amini M., “The beneficial utilization of natural zeolite in preparation of Cr/clinoptilolite nanocatalyst used in CO2-oxidative dehydrogenation of ethane to ethylene,” J. Ind. Eng. Chem., Vol. 31, pp. 142-155, 2015.##

[19]. Ates A. and Hardacre C., “The effect of various treatment conditions on natural zeolites: Ion exchange, acidic, thermal and steam treatments,” J. Colloid Interface Sci., Vol. 372, No. 1, pp. 130-140, 2012. ##

[20]. Erdoğan Alver B., “A comparative adsorption study of C2H4 and SO2 on clinoptilolite-rich tuff: Effect of acid treatment,” J. Hazard Mater, Vol. 262, pp. 627-633, 2013. ##

[21]. Lin H., Liu Q. L., Dong Y., He Y. H. and Wang L., “Physicochemical properties and mechanism study of clinoptilolite modified by NaOH,” Micropor Mesopor Mat., Vol. 218, pp. 174-179, 2015.##

[22]. Rahmani F., Haghighi M. and Mahboob S., “CO2-enhanced dehydrogenation of ethane over sonochemically synthesized Cr/clinoptilolite-ZrO2 nanocatalyst: Effects of ultrasound irradiation and ZrO2 loading on catalyticactivity and stability,” Ultrason Sonochem., Vol. 33, pp. 150-163, 2016. ##

[23]. Nezamzadeh Ejhieh A. and Zabihi Mobarakeh H., “Heterogeneous photodecolorization of mixture of methylene blue and bromophenol blue using CuO-nano-clinoptilolite,” J. Ind. Eng. Chem., Vol. 20, No. 4, pp. 1421-1431, 2014.##

[24]. Park M., Kwak B. S., Jo S. W. and Kang M., “Effective CH4 production from CO2 photoreduction using TiO2/x mol% Cu–TiO2 double-layered films,” Energ Convers Manage., Vol. 103, pp. 431-438, 2015. ##

[25]. Wang C., Shi H. and Li Y., “Synthesis and characteristics of natural zeolite supported Fe+3-TiO2 photocatalysts,” Appl. Surf. Sci., Vol. 257, No. 15, pp. 6873-6877, 2011. ##

[26]. Rivera A., Farias T., Menorval L., Autie-Castro G., Yee-Madeira H., Contreras J. L. and Autie Perez M., “Acid natural clinoptilolite: Structural properties against adsorption/separation of n-paraffins,” J. Colloid Interface Sci., Vol. 360, No. 1, pp. 220-226, 2011.##

[27]. Li J., Li X., Zhou G., Wang W., Wang C., Komarneni S. and Wang Y., “Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions,” Appl. Surf Sci., Vol. 470, pp. 115-122, 2014.##

[28]. Garcia Basabe Y., Rodriguez-Iznaga I., de Menorval L. C., Liewellyn P., Maurin G., Lewis D. W., Binions R., Autie M. amd Ruiz Salvador A. R., “Step-wise dealumination of natural clinoptilolite: Structural and physicochemical characterization,” Micropor Mesopor Mat., Vol. 135, No. 1-3, pp. 187-196, 2010. ##

[29]. Akgül M. and Karabakan A., “Promoted dye adsorption performance over desilicated natural zeolite,” Micropor Mesopor Mat., Vol. 145, No. 1-3, pp. 157-164, 2011. ##

[30]. Mohamed R. M., Ismail A. A., Othman I. and Ibrahim I. A., “Preparation of TiO2-ZSM-5 zeolite for photodegradation of EDTA,” J. Mol. Catal. A: Chem., Vol. 238, No. 1-2, pp. 151-157, 2005. ##

[31]. Zabihi Mobarakeh H. and Nezamzadeh Ejhieh A., “Application of supported TiO2 onto Iranian clinoptilolite nanoparticles in the photodegradation of mixture of aniline and 2, 4-dinitroaniline aqueous solution,” J. Ind. Eng. Chem., Vol. 26, pp. 315-321, 2015. ##

[32]. Shirsath S. R., Pinjari D. V., Gogate P. R., Sonawane S. H. and Pandit A. B., “Ultrasound assisted synthesis of doped TiO2 nano-particles: Characterization and comparison of effectiveness for photocatalytic oxidation of dyestuff effluent,” Ultrason Sonochem., Vol. 20, No. 1, pp. 277-286, 2013. ##

[33]. Wang C. and Li Y., “Preparation and characterisation of S doped TiO2/natural zeolite with photocatalytic and adsorption activities,” Mater. Technol., Vol. 29, No. 4, pp. 204-209, 2014. ##

[34]. Wu N. L. and Lee M. S., “Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution,” Int. J. Hydrogen Energy., Vol. 29, No. 15, pp. 1601-1605, 2004. ##

[35]. Badawy M. I., Ghaly M. Y. and Ali M. E. M., “Photocatalytic hydrogen production over nanostructured mesoporous titania from olive mill wastewater,” Desalination, Vol. 267, No. 2-3, pp. 250-255, 2011. ##

[36]. Mahalakshmi M., Vishnu P. S., Arabindoo B., Palanichamy M. and Murugesan V., “Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hβ zeolite-supported TiO2,” J. Hazard Mater, Vol. 161, No. 1, pp. 336-343, 2009. ##

[37]. Sreethawong T., Junbua C. and Chavadej S., “Photocatalytic H2 production from water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled Pt/TiO2 nanocrystal photocatalyst,” J. Power Sources, Vol. 190, No. 2, pp. 513-524, 2009. ##

[38]. Yan Z., Yu X., Zhang Y., Jia H., Sun Z. and Du P., “Enhanced visible light-driven hydrogen production from water by a noble-metal-free system containing organic dye-sensitized titanium dioxide loaded with nickel hydroxide as the cocatalyst,” Appl. Catal. B: Environ., Vol. 160-161, pp. 173-178, 2014. ##

[39]. Patsoura A., Kondarides D. I. and Verykios X. E., “Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes,” Appl. Catal. B: Environ, Vol. 64, No. 3-4, pp. 171-179, 2006. ##

[40]. Patsoura A., Kondarides D. I. and Verykios X. E., “Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen,” Catal. Today., Vol. 124, No. 3-4, pp. 94-102, 2007. ##

[41]. Sharma S., Pai M. R., Kaur G., Divya Satsangi V. R., Dass S. and Shrivastav R., “Efficient hydrogen generation on CuO core/AgTiO2 shell nano-hetero-structures by photocatalytic splitting of water,” Renew Energ., Vol. 36, pp. 1202-1216, 2019. ##

[42]. Wei X., Shao C., Li X., Lu N. Wang K., Zhang Z. and Liu Y., “Facile in situ synthesis of plasmonic nanoparticles-decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution,” Nanoscale, Vol. 8, No. 21, pp. 11034-11043, 2016. ##

[43]. Solakidou M., Giannakas A., Georgiou Y., Boukos N., Louloudi M. and Deligiannakis Y., “Efficient photocatalytic water-splitting performance by ternary CdS/Pt-N-TiO2 and CdS/Pt-N,F-TiO2: Interplay between CdS photo corrosion and TiO2-dopping,” Appl. Catal. B: Environ, Vol. 254, pp. 194-205, 2019. ##

[44]. Akbari Sene R., Moradi G. R. and Sharifnia S., “Sono-dispersion of TiO2 nanoparticles over clinoptilolite used in photocatalytic hydrogen production: Effect of ultrasound irradiation during conventional synthesis methods,” Ultrason Sonochem., Vol. 37, pp. 490-501, 2017. ##

[45]. Enzweiler H., Yassue Cordeiro P. H., Schwaab M., Barbosa Coutinho E., Olse S. and Fernandes N. R. C., “Evaluation of Pd-TiO2/ZSM-5 catalysts composition effects on hydrogen production by photocatalytic water splitting,” Int. J. Hydrogen Energy., Vol. 43, No. 13, pp. 6515-6525, 2018. ##

[46]. Xu D., Hai Y., Zhang X., Zhang S. and He R., “Bi2O3 cocatalyst improving photocatalytic hydrogen evolution performance of TiO2,” Appl. Surf. Sci., Vol. 400, pp. 530-536, 2017. ##

[47]. Enzweiler H., Yassue Cordeiro P. H., Schwaab M., Barbosa Coutinho E., Olsen S. and Fernandes N. R. C., “Catalyst concentration, ethanol content and initial pH effects on hydrogen production by photocatalytic water splitting,” J. Photoch Photobio A., Vol. 388, pp. 112051, 2020. ##