دسته‌بندی و تفکیک رخساره‌های لرزه‌ای به‌روش غیرنظارتی براساس آنالیز چند نشان‌گری در مخزن آسماری میدان رامشیر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، ایران

2 دانشکده علوم طبیعی، گروه زمین‌شناسی، دانشگاه تبریز، ایران

3 شرکت ملی نفت مناطق نفت‌خیز جنوب، اهواز، ایران

10.22078/pr.2020.4151.2884

چکیده

استفاده از روش‌های خودکار دسته‌بندی رخساره‌های لرزه‌ای، در مطالعات توصیف مخزن در دو دهه اخیر رو به افزایش بوده و محبوبیت و کاربرد آن‌ها در فرآیند تفسیر ژئوفیزیکی به‌عنوان وسیله‌ای برای تخمین منابع هیدروکربنی همچنان حائز اهمیت است. در ایـن مطالعـه بـا هـدف شناسـایی رخساره‌های لرزه‌ای براساس مشـخصه‌های لرزه‌ای آنها سعی شد با استفاده هم‌زمان از داده‌های لرزه‌نگاری سه‌بعدی (نشان‌گرهای لرزهای) و رخساره‌های الکتریکی (گونه‌های سنگی پتروفیزیکی) تعیین شده در محل چاه‌ها، تغییرات جانبی گونه‌های سنگی در مخزن آسماری میدان رامشیر تعیین شود. در این بررسی از شبکه عصبی و خوشه‌بندی به‌روش k-mean جهت طبقه‌بندی غیرنظارتی رخساره‌های لرزه‌ای براساس نشان‌گرهای لرزه‌ای استفاده شده است. از آنالیز مؤلفه‌های اصلی به‌عنوان یک روش جهت کاهش تعداد نشان‌گر در این مطالعه استفاده گردید. این روش به جهت تعداد کم ورودی و در نتیجه کاهش پیچیدگی مدل می‌تواند راهکار مناسبی باشد. درنهایت نشان‌گرهایی که به بهترین شکل، توزیع رخساره‌های لرزه‌ای را نشان می‌دهند تعیین شده است. نشان‌گرهای مورد استفاده شامل فرکانس غالب، مشتق پوش دامنه، مقاومت صوتی، نشان‌گر ریز لایه و تجزیه طیفی با فرکانس50 هرتز است. با به‌کارگیری این روش در مخزن آسماری میدان نفتی رامشیر، رخساره‌های لرزه‌ای مرتبط با انواع سنگ‌شناسی ماسه سنگ، آهک و دولومیت از یکدیگر تفکیک شدند. همچنین بر این اساس نقشه توزیع رخساره‌های مخزن در میدان استخراج و تفسیر گردید.
 

کلیدواژه‌ها


عنوان مقاله [English]

Unsupervised Seismic Facies Classification based on Multiattribute Analysis in the Asmari Reservoir Ramshir Oilfield

نویسندگان [English]

  • rahmat sadeghi 1
  • Reza Moussavi-Harami 1
  • ali kadkhodaie 2
  • Asadollah Mahboubi 1
  • ahmad ashtari 3
1 Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Iran
2 Earth Science Department, Faculty of Natural Science, University of Tabriz, Iran
3 National Iranian South Oil Company (NISOC), Geophysics Department, Ahvaz, Iran
چکیده [English]

The unsupervised seismic facies classification has been increasing used in reservoir characterization over the past two decades, and their popularity and application in the process of geophysical interpretation as a means of estimating hydrocarbon resources continue to grow. In this study, in order to identify seismic facies, based on their seismic attributes, we used simultaneously 3D seismic data (seismic attributes) and electrofacies (petrophysical rock type) in the studied wells, then variations of rock types in Asmari reservoir of Ramshir field have been determined. In this study, neural network approach and k-means clustering method were used to define unsupervised seismic facies based on seismic attributes. Then we used principal component analysis which is a good solution to reduce the number of inputs and thereby the complexity of the model. Finally, the seismic attributes that best show seismic facies distribution were determined. The attributes used include the dominant frequency, envelope derivative, acoustic impedance, thin-bed indicator and spectral decomposition 50 Hz. Ultimately, using this method in the Asmari reservoir of Ramshir oil field, seismic facies related to sandstone, limestone and dolomite were defined. Also, the distribution map of reservoir facies in this field was extracted and interpreted.
 

کلیدواژه‌ها [English]

  • seismic attribute
  • Electrofacies
  • Unsupervised Seismic Classification
  • Multiattribute
  • Ramshir oilfield
[1]. Dumay J, Fournier F (1988) Multivariate statistical analyses applied to seismic facies recognition, Geophysics 53: 1151–1159.##

[2]. Todorov T, Stewart R, Hampson D, Russell B (1998) Well log prediction using attributes from 3C–3D seismic data, in: SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists 1574–1576. ##

[3]. Chopra S, Marfurt K (2006) Seismic Attributes–a promising aid for geologic prediction, CSEG Recorder 31: 110–120. ##

[4]. Raef AE, Mattern F, Philip C, Totten MW (2015) 3D seismic attributes and well-log facies analysis for prospect identification and evaluation: interpreted palaeo shoreline implications, Weirman Field, Kansas, USA, Journal of Petroleum Science and Engineering 133: 40–51. ##

[5]. Russell BH (2004) The application of multivariate statistics and neural networks to the prediction of reservoir parameters using seismic attributes, Ph.D. Dissertation, University of Calgary, Alberta, Canada. ##

[6]. Pramanik AG, Singh V, Vig R, Srivastava AK, Tiwary DN (2004) Estimation of effective porosity using geostatistics and multiattribute transforms, A case study. Geophysics 69: 352–372. ##

[7]. Kadkhodaie-Ilkhchi A, Rezaee MR, Rahimpour-Bonab H, Chehrazi A (2009) Petrophysical data prediction from seismic attributes using committee fuzzy inference system, Computers & Geosciences 35: 2314–2330. ##

[8]. Raeesi M, Moradzadeh A, Ardejani FD, Rahimi  M (2012) Classification and identification of hydrocarbon reservoir lithofacies and their heterogeneity using seismic attributes, logs data and artificial neural networks, Journal of Petroleum Science and Engineering 82: 151–165. ##

[9]. Kadkhodaie-Ilkhchi R, Moussavi-Harami R, Rezaee R, Nabi-Bidhendi M, Kadkhodaie-Ilkhchi A (2014) Seismic inversion and attributes analysis for porosity evaluation of the tight gas sandstones of the Whicher Range field in the Perth Basin, western Australia, Journal of Natural Gas Science and Engineering 21: 1073–1083. ##

[10]. Arianfar A, Khedri B, Haghighi M, Golalzadeh A, Poladzadeh M, Mehdipour Z, Case History (2007) Seismic facies analysis based on 3D multiattribute volume classification in Shadegan Oilfield-Asmari Reservoir, Iran, in: SPE/EAGE Reservoir Characterization and Simulation Conference, Abu Dhabi, UAE, DOI 10.2118/111078-MS. ##

[11]. جوکار ع.، رحیمی م. و میرشکاری ف.، “دسته‌بندی و آنالیز رخساره‌های لرزه‌ای به‌روش‌های نظارتی و غیر نظارتی براساس آنالیز چند نشان‌گری،” مجله اکتشاف و تولید، شماره 50، صفحات72-67 ،1387. ##

[12]. Song C, Liu Z, Wang Y, Li X, Hu G (2017) Multi-waveform classification for seismic facies analysis, Computers & Geosciences 101: 1–9. ##

[13]. Yue D, Li W, Wang W, Hu G, Qiao H, Hu J, Zhang M, Wang W (2019) Fused spectral-decomposition seismic attributes and forward seismic modeling to predict sand bodies in meandering fluvial reservoirs, Marine and Petroleum Geology 99: 27–44. ##

[14]. Ehrenberg SN, Pickard NAH, Laursen GV, Monibi S, Mossadegh ZK, Svånå TA, Aqrawi A AM, Thirlwall  JMF (2007) Strontium isotope stratigraphy of the Asmari formation (oligocene lower miocene), sw Iran, Journal of Petroleum Geology 30: 107-128. ##

[15]. گروه مطالعات زمین‌شناسی شرکت ملی مناطق نفت‌خیز جنوب، گ‍زارش‌ ف‍از زمین‌شناسی م‍ی‍دان‌ رام‍ش‍ی‍ر، م‍خ‍زن‌ آس‍م‍اری (گزارش داخلی) ،1394. ##

[16]. Schlumberger, A geological overview of Iran. Reservoir optimization conference 19, 2003. ##

[17]. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2th ed.: John Wiley & Sons, New York. ##

[18]. Saggaf MM, Toksozz MN, Marhoon MI (2003) Seismic facies classification and Identification by competitive neural networks, Geophysics 68: 1984–1999. ##

[19]. Coléou T, Poupon M, Azbel K (2003) Unsupervised seismic facies classification: A review and comparison of techniques and implementation, The Leading Edge 22, 10: 942–953. ##

[20]. Wallet CB, Hardisty R (2019) Unsupervised seismic facies using Gaussian mixture models, Interpretation 7: 93-111. ##

[21]. Chopra S, Marfurt K (2007) Seismic attributes for prospect identification and reservoir characterization, Society of Exploration Geophysicists and European Association of Geoscientists and Engineers, https://doi.org/10.1190/1.9781560801900 ##

 [22]. Scheevel JR, Payrazyan K (1999) Principal Component Analysis Applied to 3D Seismic Data for Reservoir Property Estimation, SPE Technical Conference, Houston, Texas, USA. ##

[23]. Farzadi P (2006) Seismic facies analysis based on 3D multi-attribute volume classification, Dariyan formation, SE Persian Gulf, Journal of Petroleum Geology 29: 159–173. ##

[24]. Guo H, Marfurt KJ, Liu J (2009) Principal component spectral analysis, Geophysics 74: 35–43. ##

[25]. Roden R, Smith T, Sacrey D (2015) Geologic pattern recognition from seismic attributes: Principal component analysis and self-organizing maps, Interpretation 3: 59-83. ##

[26]. Liu Y, Sun S, Dou L, Hou J (2020) An improved probability combination scheme based on principal component analysis and permanence of ratios model - An application to a fractured reservoir modeling, Ordos Basin, Journal of Petroleum Science and Engineering 190: 107123. ##

[27]. Faber V (1994) Clustering and the Continuous k-Means Algorithm, Los Alamos Science 138. ##

[28]. Sabeti H, Javaherian A (2009) Seismic facies analysis based on K-means clustering algorithm using 3D seismic attributes, First International Petroleum Conference & Exhibition Shiraz, Iran.##

[29]. Liu Z, Wang Y, Xu F, Li X, Song GH (2018) Adaptive phase k-means algorithm for waveform classification,” Journal Exploration Geophysics 49: 213-219.##

[30]. Qi J, Zhang B, Lyu B, Marfurt K (2020) Seismic attribute selection for machine-learning-based facies analysis,”Geophysics 85: 17–35.##          

[31]. Yang W, Long H, Ma L, Sun H (2020) Research on clustering method based on weighted distance density and K-Means, Procedia Computer Science 166: 507-511.##