تحلیل جانمایی آشکارسازهای گاز در صنایع فرآیندی به‌کمک دینامیک سیالات محاسباتی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی شیمی، دانشکده محیط زیست، کرج، ایران

2 پژوهشکده فن‌آوری‌های شیمیایی، سازمان پژوهش‌های علمی و صنعتی ایران، تهران، ایران

10.22078/pr.2020.3935.2795

چکیده

جانمایی آشکارسازهای گازی یکی از مسائل پر اهمیت صنایع نفت و گاز محسوب می‌گردد چراکه شناسایی به‌موقع و متعاقباً ممانعت از گسترش انتشار گازهای سمی و قابل اشتعال می‌تواند از بروز حوادث ناگوار و خسارات محتمل جلوگیری نماید. در این مقاله ضمن ارائه یک روش‌شناسی جدید انتشار گاز سمی هیدروژن سولفاید در قسمتی از تأسیسات تقویت فشار گاز جزیره سیری شرکت نفت فلات قاره با استفاده از روش‌های مبتنی بر دینامیک سیالات محاسباتی، سناریوهای مختلفی که متاثر از پارامترهای جهت باد، سرعت باد، قطر سوراخ معادل نشتی، جهت انتشار گاز از نشتی و هندسه محیط انتشار هستند، شبیه‌سازی شده و براساس نتایج به‌دست آمده بهترین نقاط نصب آشکارساز گاز تعیین گردید. در این راستا وزش باد در 4 جهت، سرعت باد در 6 مقدار، تعداد منابع نشتی و جهت آن برابر با 11 و تعداد قطر سوراخ معادل نشتی برابر با 2 در نظر گرفته شد که نتیجه حاصل از آن‌هادر غالب 550 سناریو بررسی گردید. در تحلیل نتایج حاصل از این شبیه‌سازی‌ها محیط اصلی انتشار گاز، گسسته‌سازی شده و با جمع زدن احتمال حضور گاز سمی با غلظت بیشتر از ppm 10 در ثانیه‌ 20ام رهایش در 2391 نقطه، نقاطی که بیشترین احتمال حضور گاز را داشتند شناسایی شدند. در نهایت نتایج حاصل از این شبیه‌سازی با جانمایی موجود در آن تأسیسات مقایسه گردید. بررسی نتایج نشان داد که جانمایی فعلی دو آشکارساز صحیح ناست و نقاط بهتری برای جانمایی آنها می توان انتخاب نمود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Gas Detectors Allocation in Process Plants Using Computational Fluid Dynamics

نویسندگان [English]

  • Alireza Fazlalizadeh 1
  • Eslam Kashi 2
  • Shahryar Jafarinejad 1
1 Chemical Engineering Division, College of Environment, Karaj, Iran
2 Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
چکیده [English]

Gas detector placement is one of the most important issues in the gas and oil industries since fast detection and subsequently fast control of the toxic and flammable gas releases could prevent major accidents or disasters. In this paper, dispersion of Hydrogen Sulfide at the one of the units of Sirri Gas Compression Facility of Iranian Offshore Oil Company has been simulated with computational fluid dynamics methods. In this simulation, different scenarios according to the different wind directions and speeds, leakage hole diameters, direction of leakages, operating fluid types and topology of the environment have been studied. Therefore, 4 wind directions, 6 wind speed steps, 11 sources of leakage or their directions, and 2 equivalent holes were considered, and the results were evaluated in 550 scenarios which each scenario has its own frequency of occurrence. The main range of gas dispersion discretized to 2391 points on the three parallel surface with 0.5 m intervals from ground surface. Probability of each scenario was calculated from meteorological data, and discharge probability data were gathered from references. Probability of presence of more than 10 ppm of toxic gas after 20 seconds in each scenario was computed. Finally, by summing up the probabilities of the all scenarios in every point, the optimized locations for placement of detectors was determined, and the results of these simulations were compared with the existing detectors placement. Finally, by considering the results, it is found out  that the current location of two detectors is not correct, and better locations can be selected.
 

کلیدواژه‌ها [English]

  • locating
  • detector
  • Computational Fluid Dynamics
  • gas dispersion
  • Hydrogen Sulfide
[1]. CCPS. (2009) Continuous monitoring for hazardous material releases, 1st ed., Wiley-AIChE. ##

[2]. Ramsden D (2009) Optimization approaches to sensor placement problems, Doctoral dissertation, Ph. D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, USA. ##

[3]. DeBerg M, vanKreveld M, Overmars M, Schwarzkopf O (2010) Computational geometry: Algorithms and applications, New York. ##

[4]. Lee W, Kulesz J (2008) A risk-based sensor placement methodology, Journal of hazardous materials, 158, 2-3: 417-429. ##

[5]. Dhillon S, Chakrabarty K ,Iyengar S (2002) Sensor placement for grid coverage under imprecise detections. In Proceedings of the Fifth International Conference on Information Fusion, FUSION 2: 1581-1587. ##

[6]. Hamel D, Chwastek L (2006) A computational fluid dynamics approach for optimization of a sensor network, Measurement Systems for Homeland Security, Contraband Detection and Personal Safety, IEEE. ##

[7]. Berry J, Hart W, Phillips C, UberJ, Watson J (2006) Sensor placement in municipal water networks with temporal integer programming models, Journal of Water Resources Planning and Management 132, 4: 218-224. ##

[8]. De Friend S, Dejmek M, Porter L, Deshotels B (2008) A risk-based approach to flammable gas detector spacing, Journal of hazardous materials 159: 142-151. ##

[9]. Davis S, Hansen R, Gavelli F, Bratteteig A (2015) Using CFD to analyze gas detector placement in process facilities2015.

[10]. Benavides-Serrano J, Mannan S, Laird D (2015) A quantitative assessment on the placement practices of gas detectors in the process industries”. Journal of Loss Prevention in the Process Industries 35: 339-351. ##

[11]. Vázquez-Román R, Díaz-Ovalle C, Quiroz-Pérez E, Mannan S (2016) A CFD-based approach for gas detectors allocation, Journal of Loss Prevention in the Process Industries 44: 633-641. ##

[12]. ANSYS CFX-Solver Theory Guide, ANSYS, Inc, 2017. ##

[13]. Hydrocarbon Release Database (HCRD), available at: http://www.hse.gov.uk/offshore/hydrocarbon.htm. ##

[14]. Mirzaei F, Mirzaei F, KashiE (2019) Turbulence model selection for heavy gases dispersion modeling in topographically Complex Area, Journal of Applied Fluid Mechanics 12, 6: 1745-1755. ##

[15]. Hosseini H, Rad P, Kashi E (2015) Investigation of dissipation flow in the urban canyon, Advances in Environmental Technology 3: 113-120. ##

[16]. Kashi E, Mirzaei F, Mirzaei F (2015) Analysis of chlorine gas incident simulation and dispersion within a complex and populated urban Area Via computation fluid dynamics, Advances in Environmental Technology 1: 49-58. ##

[17]. Kashi E, Mirzaei F, Mirzaei F (2015) Analysis of gas dispersion and ventilation within a comprehensive CAD model of an offshore platform via computational fluid dynamics, Journal of Loss Prevention in the Process Industries 36: 125-133. ##

[18]. Kashi E, Shahraki F, Rashtchian D, Behzadmehr A (2009) Effects of vertical temperature gradient on heavy gas dispersion in buildup area, Iranian Journal of Chemical Engineering, 6, 3 (Summer). ##

[19]. کاشی ا.، شهرکی ف.، رشتچیان د. و محبی نیا س.، "بررسی پخش ناگهانی گازو انفجار آن در محیط‌های مانع دار به‌کمک آنالیز CFD," امیر کبیر، شماره 68، 1387. ##

[20]. DNV PHAST, available at: https://www.dnvgl.com/services. ##

[21]. ANSYS, ICEM CFD, Tutorial Manual, ANSYS, Inc. (2017). ##