آشکارسازی نشت نفت با استفاده از تصاویر فروسرخ گرمایی لندست؛ مطالعه موردی: شمال خلیج‌فارس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش علوم زمین، دانشکده علوم، دانشگاه شیراز، ایران

2 بخش علوم زمین، دانشکده علوم، دانشگاه شیراز، شیراز

چکیده

فناوری سنجش ازدور، یکی از راه‌های آشکارسازی نشت نفت، به‌ویژه در یک منطقه وسیع است. تصاویر ماهواره‌ای با توان تفکیک بالا می‌توانند به‌عنوان یک رویکرد اولیه اکتشاف نفت استفاده شوند. هدف از این پژوهش، آشکارسازی نشت نفت پیرامون سکوهای نفتی در تاریخ‌های 2 و 10 ژوئن 2015 در بخش شمالی خلیج‌فارس با استفاده از تصاویر فروسرخ گرمایی لندست 7 و لندست 8 می‌باشد. روش دمای سطح دریا برای باندهای گرمایی این تصاویر به‌کار گرفته شد. نتایج نشان داد که منطقه با نشت نفت دارای دمای پایین‌تری نسبت به مناطق اطراف آن است. به دلیل اختلاف دمایی که بین نفت و آب وجود دارد روش دمای سطح دریا  فقط وضعیت فوق را نشان می‌دهد و از این روش می‌توان برای آشکارسازی مناطق نفتی استفاده کرد. در پایان، نتایج آن با استفاده از ضریب کاپا که بخشی از ماتریس آشفتگی است صحت‌سنجی شد که مقدار آن برای باندهای 10 و 11 لندست 8، به ترتیب 98/0 و 85/0 و برای باند6 لندست 7، 92/0 به‌دست آمد. این مقادیر درستی نتایج را با ضریب قابل قبول تائید می‌کنند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Oil Spill Detection using Landsat Thermal Infrared Imagery; A Case Study of the Northern Persian Gulf

نویسندگان [English]

  • Majid H. Tangestani 1
  • Marjan Karimi 2
1 Department of Earth Sciences, Faculty of Sciences, Shiraz University, Iran
2 Department of Earth Sciences, Faculty of Sciences, Shiraz University, Iran
چکیده [English]

Remote sensing technology is one of the methods to detect oil spill, especially in a large region. The high resolution satellite images can be used in primary steps of oil exploration. The aim of this study was to detect the oil spill events of June 2, and 10, 2015, around oil platforms, northern Persian Gulf, using Landsat 7 and Landsat 8 thermal infrared imagery. The applied method was based on measuring the sea surface temperature using the thermal bands. Results showed that the sea surface covered by oil spill has lower temperature than surroundings. It indicates that the derived sea surface temperature just reflects the mentioned status, and this method can be used to detect the potential oil basins. Finally, the results were verified using the Kappa coefficient as part of the confusion matrix; in addition, the amounts of the Kappa coefficient were estimated 0.98 and 0.85 for bands 10 and 11 of Landsat 8, and 0.92 for band 6 of Landsat 7 respectively. These values confirmed the accuracy of results with acceptable coefficients.
 

کلیدواژه‌ها [English]

  • Oil Spill
  • Sea Surface Temperature
  • Thermal Infrared Imagery
  • Landsat
  • Northern Persian Gulf
[1]. Arslan N (2018) Assessment of oil spills using Sentinel 1 C-band SAR and Landsat 8 multispectral sensors, Environmental monitoring and assessment, 190, 11: 637.##
[2]. Gade M, Alpers W, Hühnerfuss H, Wismann VR, Lange PA (1998) On the reduction of the radar backscatter by oceanic surface films: Scatterometer measurements and their theoretical interpretation, Remote Sensing of Environment, 66, 1: 52-70. ##
[3]. Richards John A, Richards JA (1999) Remote sensing digital image analysis, Springer, 3, 10-38.‏ ##
[4]. Shuchman RA, Onstott RG, Johannessen OM, Sandven S, Johannessen JA (2004) Processes at the ice edge: the arctic, Synthetic Aperture Radar marine user’s manual, 373-395‏.##
[5]. Montali A, Giacinto G, Migliaccio M, Gambardella A (2006) Supervised pattern classification techniques for oil spill classification in SAR images: preliminary results, In SEASAR2006 Workshop, ESA-ESRIN, 23-26.‏ ##
[6]. Solberg AH, Brekke C, Husoy PO (2007) Oil spill detection in Radarsat and Envisat SAR images, IEEE Transactions on Geoscience and Remote Sensing, 45, 3: 746-755. ##
[7]. Trivero P, Biamino W, Nirchio F (2007) High resolution COSMO-SkyMed SAR images for oil spills automatic detection, International Geoscience and Remote Sensing Symposium, 2-5. ##
[8]. Gade M (2015) Synthetic aperture radar applications in coastal waters, In Proceedings of the 12th International Conference on the Mediterranean Coastal Environment MEDCOAST held, 6-10. ##
[9]. Misra A, Balaji R (2017) Simple approaches to oil spill detection using sentinel application platform (SNAP)-ocean application tools and texture analysis: a comparative study, Journal of the Indian Society of Remote Sensing, 45, 6: 1065-1075‏.##
[10]. Xing Q, Li L, Lou M, Bing L, Zhao R, Li Z (2015) Observation of oil spills through Landsat thermal infrared imagery: a case of deepwater horizon, Aquatic Procedia, 3: 151-156. ##
[11]. Tseng WY, Chiu LS (1994) AVHRR observations of Persian Gulf oil spills, In Proceedings of IGARSS›94-1994 IEEE International Geoscience and Remote Sensing Symposium, 2: 779-782. ##
[12]. Cai G, Wu J, Xue Y, Wan W, Huang X (2007) Oil spill detection from thermal anomaly using ASTER data in Yinggehai of Hainan, China, In 2007 IEEE International Geoscience and Remote Sensing Symposium, 898-900. ##
[13]. Shih WC, Andrews AB (2008a) Infrared contrast of crude-oil-covered water surfaces, Optics letters, 33, 24: 3019-3021. ##
[14]. Shih WC, Andrews AB (2008b) Modeling of thickness dependent infrared radiance contrast of native and crude oil covered water surfaces, Optics Express, 16, 14: 10535-10542. ##
[15]. Barsi J, Lee K, Kvaran G, Markham B, Pedelty J (2014) The spectral response of the Landsat-8 operational land imager, Remote Sensing, 6, 10: 10232-10251‏.##
[16]. Kämpf J, Sadrinasab M (2006) The circulation of the Persian Gulf: a numerical study, Ocean Science, 2, 1: 27-41‏.##
[17]. Hassanzadeh S, Hosseinibalam F, Rezaei-Latifi A (2011) Numerical modelling of salinity variations due to wind and thermohaline forcing in the Persian Gulf, Applied Mathematical Modelling,  35, 3: 1512-1537. ##
[18]. Pous S, Lazure P, Carton X (2015) A model of the general circulation in the Persian Gulf and in the Strait of Hormuz: Intraseasonal to interannual variability, Continental Shelf Research, 94: 55-70. ##‏
[19]. Chander G, Markham B L, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors, Remote sensing of environment, 113, 5: 893-903. ##
[20]. Emery WJ, Castro S, Wick GA, Schluessel P, Donlon C (2001) Estimating sea surface temperature from infrared satellite and in situ temperature data, Bulletin of the American Meteorological Society, 82, 12: 2773-2786. ##
[21]. Lamaro AA, Mariñelarena A, Torrusio SE, Sala SE (2013) Water surface temperature estimation from Landsat 7 ETM+ thermal infrared data using the generalized single-channel method: Case study of Embalse del Río Tercero (Córdoba, Argentina), Advances in Space Research, 51, 3: 492-500‏.##
[22]. Cahyono AB, Saptarini DIAN, Pribadi CB, Armono HD (2017) Estimation of sea surface temperature (SST) using split window methods for monitoring industrial activity in coastal area, In Applied Mechanics and Materials Trans Tech Publications, 862: 90-95. ##
[23]. ‏Jaelani LM, Alfatinah A (2017) Sea Surface Temperature mapping at medium scale using landsat 8-TIRS satellite image, IPTEK Journal of Proceedings Series, 3, 6. ##
[24]. Qianguo X, Chuqun CHEN, Ping S, Jingkun Y, Shilin T (2006a) Atmospheric correction of Landsat data for the retrieval of sea surface temperature in coastal waters, Aeta Oceanolog-ea Sinica, 25, 3: 25-34. ##
[25]. Xing Q, Chen CQ, Shi P (2006b) Method of integrating Landsat-5 and Landsat-7 data to retrieve sea surface temperature in coastal waters on the basis of local empirical algorithm, Ocean Science Journal, 41, 2: 97-104‏.##
[26]. Isaya Ndossi M, Avdan U (2016) Application of open source coding technologies in the production of land surface temperature (LST) maps from Landsat: a PyQGIS plugin, Remote sensing, 8, 5: 413. ##
[27]. Reutter HF, Olesen S, Fischer H (1994) Distribution of the brightness temperature of land surfaces determined from AVHRR data, International Journal of Remote Sensing, 15, 1: 95- 104. ##
[28]. Weng, Q, Lu D, Schubring J (2004) Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies, Remote sensing of Environment, 89, 4: 467-483‏.##
[29]. Qianguo X, Chuqun CHEN, Ping S, Jingkun Y, Shilin T (2006a) Atmospheric correction of Landsat data for the retrieval of sea surface temperature in coastal waters, Aeta Oceanolog-ea Sinica, 25, 3: 25-34. ##