مقایسه عملکرد غشاهای نانوفیلتراسیون اصلاح شده با نانوذرات HQ-Fe3O4 و FeQ3 محتوی 8- هیدروکسی کینولین

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشکده مهندسی شیمی، دانشگاه اراک، ایران

چکیده

در این مطالعه، ابتدا از 8- هیدروکسی کینولین برای سنتز نانوذرات FeQ3 و اصلاح نانوذرات آهن اکسید (Fe3O4) استفاده شد. سپس نانوذرات سنتزی FeQ3 و نانوذرات اصلاح شده آهن (HQ-Fe3O4) برای ساخت غشاهای نانوفیلتراسیون مورد استفاده قرار گرفتند. بنابراین با استفاده از غلظت‌های مختلف نانوذرات به‌عنوان افزودنی در پلی اتر- سولفون (PES)، غشاهای نانوفیلتراسیون PES/FeQ3 و PES/HQ-Fe3O4 ساخته شدند. جهت ارزیابی پیوندهای شیمیایی تشکیل شده در نانوذرات سنتز شده FeQ3، نانوذرات اصلاح شده HQ-Fe3O4 و غشاها از آنالیز FTIR استفاده شد. همچنین جهت ارزیابی مورفولوژی ساختار غشاهای آماده شده از آنالیزهای SEM و AFM استفاده شد. سپس عملکرد جداسازی و فیلتراسیون غشاهای ساخته شده، توسط شار آب خالص عبوری و جداسازی نمک‌های منیزیم سولفات ارزیابی شد. نتایج، بالاترین میزان شار آب خالص غشاهای تهیه شده PES/FeQ3 و PES/HQ-Fe3O4 را L/m2h 6/17 برای غشای محتوی 5/0% وزنی از نانوذرات نشان داد؛ درحالی‌که شار آب خالص برای غشای خالص پلی اتر سولفون (بدون نانوذره) حدود L/m2h 1/7 بود. همچنین، میزان دفع منیزیم سولفات برای غشای محتوی نانوذرات FeQ3 به حدود 86% در 5/0% وزنی از نانوذرات افزایش یافت و برای غشای PES/HQ-Fe3O4 به 91% در 5/0% وزنی از نانوذرات اصلاح شده افزایش پیدا کرد درحالی‌که میزان آن برای غشای خالص بدون نانوذره 55/58% بود. همچنین، ارزیابی شار نسبت به زمان نشان داد که غشاهای اصلاح شده نسبت به غشای خالص دارای عملکرد جداسازی قابل توجهی هستند.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

The Comparison of Separation Performance of Nanofiltration Membranes by HQ-Fe3O4 And Feq3 Nanoparticles Including 8-Hydroxyquinoline

نویسندگان [English]

  • Saeed Ansari
  • Abdolreza Moghadassi
  • Sayed Mohsen Hosseini
Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran.
چکیده [English]

In this research, 8-hydroxyquinoline was applied to synthesize FeQ3 nanoparticles and modification of Fe3O4 nanoparticles. Afterwards, synthesized FeQ3 and modified iron nanoparticles (HQ-Fe3O4) were used to prepare nanofiltration membranes. Therefore, by incorporation of different concentrations of nanoparticle as an additive into the PES as membrane matrix, PES/FeQ3 and PES/HQ-Fe3O4 nanofiltration membranes were constructed. FTIR analysis was used to nanoparticle and membrane characterization. Moreover, membranes morphology was evaluated by SEM and AFM analysis. The separation performance of prepared membranes was examined by pure water flux, MgSO4 rejection. The results showed the highest pure water flux (17.6 L/m2h) for M4 in 0.5 wt.% nanoparticles for both types of membranes. While it was 7.1 L/m2h for the pure membrane. Furthermore, the MgSO4 rejection increased to 91% in 0.5 wt.% of HQ-Fe3O4 nanoparticles, and it was 86% in 0.5 wt.% of Fe/Q3 nanoparticles. Moreover, the fouling resistance of fabricated membranes enhanced by incorporation these nanoparticles.
 

کلیدواژه‌ها [English]

  • Nanofiltration membranes
  • Poly ether sulfone
  • 8-hydroxyquinoline
  • Iron Oxide Nanoparticles
  • Wastewater Treatment
[1]. Mulder M (1996) Basic Principles of Membrane Technology, Kluwer Academic Publishers, Netherlands. ##

[2]. Fane AG, Tang CY, Wang R (2011) Membrane technology for water: Microfiltration, ultrafiltration, nanofiltration, and reverse osmosis, in: P. Wilderer (Ed.) Treatise on water science, Elsevier Science, Amsterdam; Hackensack, NJ, 301-335. ##

[3]. Rana D, Matsuura T (2010) Surface modifications for antifouling membranes, Chemical Reviews, 110: 2448-2471. ##

[4]. Gullinkala T (2010) Evaluation of Poly (Ethylene Glycol) Grafting as a Tool for Improving Membrane Performance, in:  The University of Toledo. ##

[5]. Baker RW (2004) Membrane Technology and Applications, John Wiley and Sons Ltd., England. ##

[6]. See Toh YH (2005) Green asymmetric molecule manufacture using organic solvent nanofiltration and homogeneous catalyst recycle, in: Department of Chemical Engineering and Chemical Technology, Imperial College - London, London SW7 2BY, UK. ##

[7]. Ying Y, Ying W, Li Q, Meng D, Ren G, Yan R, Peng X (2017) Recent advances of nanomaterial-based membrane for water purification, Applied Materials Today, 7: 144-158. ##

[8]. Zhang M, Guan K, Ji Y, Liu G, Jin W, Xu N (2019) Controllable ion transport by surface-charged graphene oxide membrane, Nature communications, 10: 1-8. ##

[9]. Sianipar M, Kim SH, Iskandar F, Wenten IG (2017) Functionalized carbon nanotube (CNT) membrane: progress and challenges, RSC Advances, 7: 51175-51198. ##

[10]. Madhura L, Singh S, Kanchi S, Sabela M, Bisetty, Inamuddin K (2019) Nanotechnology-based water quality management for wastewater treatment, Environmental Chemistry Letters, 17: 65-121. ##

[11]. Lingamdinne LP, Koduru JR, Karri RR (2019) A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification, Journal of Environmental Management, 231: 622-634. ##

[12]. Abdali N, Marjani A, Heidary F, Adimi M (2017) Fabrication of PVA coated PES/PVDF nanocomposite membranes embedded with in situ formed magnetite nanoparticles for removal of metal ions from aqueous solutions, New Journal of Chemistry, 41: 6405-6414. ##

[13]. Liu C, Sun X, Liu L, Liu J, Qi M, An H (2016) Synthesis of 8-Hydroxyquinoline-functionalized polyglycidy methacrylate resin and its efficient adsorption and desorption for Pb (II), Desalination Water Treatment, 57: 18425-18437. ##

[14]. Kosa SA, Al-Zhrani G, Salam MA (2012) Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline, Chemical Engineering Journal, 181: 159-168. ##

[15]. Li Y, Gao B, Fang X (2013) Preparation of 8‐hydroxyquinoline‐type composite chelating material HQ‐PHEMA/SiO2 and its adsorption behavior for heavy metal ions, Journal of Chemical Technology Biotechnology, 88: 1459-1467. ##

[16]. Nouri M, Marjani A, Tajdari M, Heidary F, Salimi M (2018) Preparation of cellulose acetate membrane coated by PVA/Fe3O4 nanocomposite thin film: an in situ procedure, Colloid Polymer Science, 296: 1213-1223. ##

[17]. Devi VB, Arulmozhichelvan P, Murugakoothan P (2017) Synthesis and characterization of Znq2 and Znq2: CTAB particles for optical applications, Bulletin of Materials Science, 40: 1049-1053. ##

[18]. Rostamnia S, Gholipour B, Liu X, Wang Y, Arandiyan H (2018) NH2-coordinately immobilized tris (8-quinolinolato) iron onto the silica coated magnetite nanoparticle: Fe3O4@ SiO2-FeQ3 as a selective Fenton-like catalyst for clean oxidation of sulfides, Journal of colloid interface science, 511: 447-455. ##

[19]. Rahimpour A, Jahanshahi M, Rajaeian B, Rahimnejad MJ (2011) TiO2 entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties, Desalination, 278: 343-353. ##

[20]. Mansourpanah Y, Madaeni S, Rahimpour A, Farhadian A, Taheri A (2009) Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photo-catalyst: performance, characterization and fouling-resistant capability, Journal of Membrane Science, 330: 297-306. ##

[21]. Bagheripour E, Moghadassi A, Hosseini S, Van der Bruggen B, Parvizian F (2018) Novel composite graphene oxide/chitosan nanoplates incorporated into PES based nanofiltration membrane: Chromium removal and antifouling enhancement, Journal of Industrial Engineering Chemistry, 62: 311-320. ##

[22]. Shahedi Z, Jafari MR, Zolanvari AA (2017) Synthesis of ZnQ2, CaQ2, and CdQ2 for application in OLED: optical, thermal, and electrical characterizations, Journal of Materials Science: Materials in Electronics, 28: 7313-7319. ##

[23]. Bagheripour E, Moghadassi A, Hosseini S, Ray M, Parvizian F, Van der Bruggen B (2012) Highly hydrophilic and antifouling nanofiltration membrane incorporated with water-dispersible composite activated carbon/chitosan nanoparticles, Chemical Engineering Research Design, 132: 812-821. ##

[24]. Farjami M, Moghadassi A, Vatanpour V, Hosseini SM, Parvizian F (2018) Preparation and characterization of a novel high-flux emulsion polyvinyl chloride (EPVC) ultrafiltration membrane incorporated with boehmite nanoparticles, Journal of Industrial Engineering Chemistry, 72: 144-156. ##

[25]. Mehrnia MR, Mojtahedi YM, Homayoonfal M (2015) What is the concentration threshold of nanoparticles within the membrane structure? A case study of Al2O3/PSf nanocomposite membrane, Desalination, 372: 75-88. ##