بهینه سازی فرآیند جداسازی گازی با استفاده از غشا پلیمری اصلاح شده بر پایه الگوریتم ژنتیک و شبکه عصبی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی شیمی، دانشکده فنی مهندسی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، ایران

2 آزمایشگاه نفت و گاز، گروه مهندسی نفت، دانشکده نفت و مهندسی شیمی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

افزودن نانوذرات به ماتریس پلیمری منجر به افزایش عملکرد غشا در فرایند جداسازی گازی می‌شود. در تحقیق جاری، هدف یافتن نقطه بهینه عملیاتی جداسازی گازی برای غشای پلیمری اصلاح شده با نانوذرات می باشد. متغیرهای عملیاتی مورد بررسی نوع نانوذره، غلظت نانوذره اضافه شده و اختلاف فشار عملیاتی در دوسوی غشا می‌باشد. نانوذرات Al2O3 ،ZnO و TiO2 در این تحقیق مورد استفاده قرار گرفتند. همچنین غلظت نانوذره و اختلاف فشار عملیاتی به ترتیب در محدوده 5/2 تا 15% و 2 تا bar 25 مورد بررسی قرار گرفتند. یکی از الزامات  بهینه‌سازی فرایند، توسعه یک مدل قوی و کارآمد است. بدین منظور ابتدا یک مدل قدرتمند با استفاده از شبکه عصبی مصنوعی توسعه پیدا کرد که قادر به پیش‌بینی میزان تراوش‌پذیری گازهای اکسیژن، نیتروژن، متان و دی اکسید کربن می باشد. مدل‌هایی براساس انواع شبکه های عصبی پیشخور توسعه داده شدند که R2 بزرگتر از 9/0 داشتند. سپس با استفاده از الگوریتم ژنتیک شرایط بهینه عملیاتی برای هر یک از گازهای مورد بررسی با در نظر گرفتن چهار هدف و راهبرد استخراج شدند. نتایج بهینه‌سازی نشان دادند که مقدار تراوش‌پذیری بیشینه برای گازهای اکسیژن، نیتروژن، متان و دی اکسید کربن به ترتیب برابر با 7/334، 9/779، 7/902 و 4/270 می‌باشد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Genetic-neural Network Based Optimization of Gas Separation Process Using Modified Polymeric Membrane

نویسندگان [English]

  • Amin Hedayati Moghaddam 1
  • Seyed Amin Mirmohammadi 1
  • Afshar Alihosseini 1
  • Farhad Amanizadeh Fini 2
1 Department of Chemical Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 Petroleum Laboratory, School of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Addition of nanoparticles to a polymeric matrix leads to enhance the performance of membrane gas separation. In this study, the aim is to find the optimum operative point of polymeric membrane modified by adding nanoparticles in gas separation. The assessed factors are type of nanoparticle, percentage of added nanoparticle, and cross membrane pressure.  Nanoparticles of AL2O3, ZnO, and TiO2 were used. Further, the ranges of nanoparticle concentration and operative cross membrane pressure were 2.5 to 15% and 2 to 25 bar respectively. To optimize a process, developing a robust model is necessary. Therefore, first, a powerful model based on artificial neural network was developed, which it was able to predict the values of permeability of oxygen, nitrogen, methane, and carbon dioxide. Neural network models were developed that had R2 greater than 0.9. Next, the optimum operative conditions for assessed gases were found using methodology based on genetic algorithm and considering four strategies. The results of optimization show that the maximum values of permeability for oxygen, nitrogen, methane, and carbon dioxide are 334.7, 779.9, 902.7, and 270.4 respectively.
 

کلیدواژه‌ها [English]

  • Gas Separation
  • Polymeric Membrane
  • Optimization
  • Artificial Neural Network
  • Genetic Algorithm
[1]. Aaron D, Tsouris C (2001) Separation of CO2 from Flue Gas: A Review, Separation Science and Technology, 40: 321-48.##

[2]. Wang S, Lu L, Lu X, Cao W, Zhu Y (2016) Adsorption of binary CO2/CH4 mixtures using carbon nanotubes: Effects of confinement and surface functionalization, Separation Science and Technology, 51: 1079-92. ##

[3]. Khot KM, Heer PKKS, Biniwale RB, Gaikar VG (2014) Equilibrium Adsorption Studies of CO2, CH4, and N2 on Amine Functionalized Polystyrene, Separation Science and Technology, 49: 2376-88. ##

[4]. Salahuddin Z, Farrukh S, Hussain A (2018) Optimization study of polyethylene glycol and solvent system for gas permeation membranes, International Journal of Polymer Analysis and Characterization 23: 483-92. ##

[5]. Basu A, Akhtar J, Rahman MH, Islam MR (2004) A review of separation of gases using membrane systems, Petroleum Science and Technology, 22: 1343-68. ##

[6]. Moghaddam AH, Shayegan J, Sargolzaei J (2016) Investigating and modeling the cleaning-in-place process for retrieving the membrane permeate flux: Case study of hydrophilic polyethersulfone (PES), Journal of the Taiwan Institute of Chemical Engineers, 62: 150-7. ##

[7]. Kim JH, Min BR, Kim YW, Kang SW, Won J, Kang YS. (2007) Novel composite membranes comprising silver salts physically dispersed in poly (ethylene-co-propylene) for the separation of propylene/propane, Macromolecular Research 15:343-7. ##

[8]. اسماعیلی م، عطار نصرتی س. (2019) ارزیابی ساختارهای متفاوت غشای انتقال تسهیل یافته پلی‌وینیل‌پیرولیدن در حضور نمک‎های نقره و بررسی اثرات آن در فرآیند جداسازی اتیلن از اتان. پژوهش نفت 29:16-28. ##

[9]. Anson M, Marchese J, Garis E, Ochoa N, Pagliero C (2004) ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation, Journal of membrane science, 243:19-28. ##

[10]. Nik OG, Chen XY, Kaliaguine S (2012) Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation, Journal of Membrane Science, 413: 48-61. ##

[11]. Dorosti F, Omidkhah M, Abedini R (2014) Fabrication and characterization of Matrimid/MIL-53 mixed matrix membrane for CO2/CH4 separation, Chemical Engineering Research and Design, 92: 2439-48. ##

[12]. Adams R, Carson C, Ward J, Tannenbaum R, Koros W (2010) Metal organic framework mixed matrix membranes for gas separations, Microporous and Mesoporous Materials, 131: 13-20. ##

[13]. Abedini R, Omidkhah M, Dorosti F (2014) Highly permeable poly (4-methyl-1-pentyne)/NH 2-MIL 53 (Al) mixed matrix membrane for CO2/CH4 separation, RSC advances, 4: 36522-36537. ##

[14]. Pedram MZ, Omidkhah M, Amooghin AE (2014) Synthesis and characterization of diethanolamine-impregnated cross-linked polyvinylalcohol/glutaraldehyde membranes for CO2/CH4 separation, Journal of Industrial and Engineering Chemistry, 20: 74-82.

[15]. قاسمی اصطهباناتی ا, امیدخواه م, عبادی آ. (2019) تهیه غشاهای شبکه‌آمیخته حاوی پلی‌اتر بلاک آمید و نانوذرات نقره به‌منظور بررسی تراوایی گازهای دی‌اکسیدکربن، نیتروژن و متان. پژوهش نفت 29:56-70. ##

[16]. Alihosseini A, Zergani D, Saeedi Dehaghani AH (2019) Optimization of parameters affecting separation of gas mixture of O2, N2, CO2 and CH4 by PMP membrane modified with TiO2, ZnO and Al2O3 nanoparticles, Polyolefins Journal, 7: 13-24. ##

[17]. Alihosseini A, Hedayati Moghaddam A (2020) Permeability and Selectivity Prediction of Poly (4-methyl 1-pentane) Membrane Modified by Nanoparticles in Gas Separation through Artificial Intelligent Systems, Polyolefins Journal, 7: 91-98. ##

[18]. Heidari BS, Moghaddam AH, Davachi SM, Khamani S, Alihosseini A (2019) Optimization of process parameters in plastic injection molding for minimizing the volumetric shrinkage and warpage using radial basis function (RBF) coupled with the k-fold cross validation technique, Journal of Polymer Engineering, 39: 481-92. ##

[19]. شیرانی م, اکبری ع, نژادکورکی ع, گلی ع, آزمون ب, شیرانی ن. (2018) بهینه‎سازی گوگردزدایی استخراجی نمونه سوخت با یک حلال یوتکتیک عمیق جدید سبز با استفاده از الگوریتم ژنتیک- شبکه عصبی. پژوهش نفت 28:147-57. ##

[20]. محبیان ر, ریاحی م, کدخدایی ع. (2018) ترکیب روش‌های عصبی، فازی و عصبی- فازی با استفاده از الگوریتم مورچگان پیوسته برای تشخیص رخساره‌های مخزن. پژوهش نفت 28:97-109. ##

[21] Savari M, Moghaddam AH, Amiri A, Shanbedi M, Ayub MNB (2017) Comprehensive heat transfer correlation for water/ethylene glycol-based graphene (nitrogen-doped graphene) nanofluids derived by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS), Heat and Mass Transfer, 53: 3073-83. ##

[22]. مفخمی مهرآبادی م, آقایی ع, صهبا یغمایی م. (2019) مدل‎سازی پیش‎بینی پارامترهای شار و گرفتگی غشاهای نانوکامپوزیت اولترافیلتراسیون PVDF عامل‎دار شده با نانولوله‎های کربنی با استفاده از سیستم‎های شبکه‎های هوشمند. پژوهش نفت 28: 35-18. ##

[23]. Picton P (1994) Introduction to neural networks: Macmillan International Higher Education. ##

[24]. Demuth HB, Beale MH, De Jess O, Hagan MT (2014) Neural network design: Martin Hagan. ##