مقایسه انواع مدل‌های محاسبه تراوایی براساس قطر گلوگاه حفرات در سازندهای دالان و کنگان، بخش مرکزی خلیج فارس

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده زمین‌شناسی، دانشکدگان علوم، دانشگاه تهران، ایران

10.22078/pr.2020.4142.2879

چکیده

تراوایی سیالات از جمله مهم‌ترین پارامترهای ارزیابی مخزن است. در این مطالعه، تراوایی محاسبه‌ شده از مدل‌های پیش‌بینی تراوایی مختلف، با تراوایی مغزه در یکی از میادین هیدروکربنی بخش مرکزی خلیج‌فارس مقایسه شده است. مدل‌های استفاده‌ شده در این مطالعه شامل وینلند، سوآن‌سون، پیت‌من و داستی‌دار است. همچنین، 50 نمونه آزمایش تزریق جیوه مربوط به سازندهای دالان و کنگان استفاده‌ شده است. پس از مقایسه برازشی مقادیر تراوایی پیش‌بینی شده با تراوایی واقعی حاصل از مغزه، مدل‌های تراوایی سوآن‌سون و وینلند به‌ترتیب بهترین نتایج را برای سازندهای کربناته کنگان و دالان نشان دادند. مدل سوآن‌سون برخلاف سایر مدل‌ها فاکتور مهم قطر مؤثر گلوگاه‌ها در تروایی را در نمودار تزریق جیوه در نظر گرفته است که نقش تعیین‌کننده‌ای در مقدار تراوایی دارد. از آنجا که در محیط‌های کربناته ارتباط مشخصی بین مقدار تخلخل و تراوایی وجود ندارد، مدل‌هایی که تخلخل را به‌عنوان یکی از عوامل در نظر گرفته‌اند در مقایسه با مدل سوآن‌سون که در نظر نگرفته است دقت کم‌تری دارند. نوع لیتولوژی (کربناته یا ماسه‌سنگی) مخزن به‌سبب تفاوت در رخساره‌ها و در نتیجه، رفتار پتروفیزیکی سنگ، نقش تعیین کننده‌ای در مدل ساخته‌شده دارد. در نتیجه، در دقت تراوایی مؤثر است به گونه‌ای که مدلی که با شرایط کربناته کالیبره شده است بهترین پیش‌بینی را نسبت به مدل‌های دیگر که در شرایط آواری و یا هردو کالیبره شده‌اند، نشان می‌دهد.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Different Types of Permeability Estimation Models Based on Pore-Throats Diameter in Dalan and Kangan Formations, the Central Persian Gulf

نویسندگان [English]

  • Mustafa Rezaei
  • Vahid Tavakoli
  • Hossain Rahimpour-Bonab
School of Geology, College of Science, University of Tehran, Iran
چکیده [English]

Fluid permeability is one of the most important parameters in reservoir characterization. In this study, permeability calculated from different models and compared with the laboratory measured permeability in a hydrocarbon field in the central part of the Persian Gulf. The permeability models used in this study include Winland, Swanson, Pittman, and Dastidar. In this analysis, 50 mercury injection experiments from Dalan and Kangan formations were used. Conclusions indicate that Swanson and Winland permeability models are the best reservoir permeability prediction models for the Kangan and Dalan carbonate formations, respectively. Swanson’s model unlike other models considers the effects of pore throats in mercury injection curve as the main factor, which it has a key role in permeability prediction. In carbonate environments, there is not specific relation between porosity and permeability. Therefore, models that considered porosity as a factor for permeability prediction show less accuracy. The reservoir’s lithology (carbonate or clastic), because of the different facies and lithology, have various petrophysical features. In this manner, the models that have been calibrated based on carbonates lead to a better prediction in the carbonates in comparison with models which calibrated based on clastic or both.
 

کلیدواژه‌ها [English]

  • Permeability Model
  • Mercury Injection Test
  • petrophysics
  • Dalan Formation
  • Kangan Formation
[1]. Washburn E W (1921) Note on a method of determining the distribution of pore sizes in a porous material.Proceedings of the National academy of Sciences of the United States of America, 7: 115–116.##
[2]. Swanson B F (1981) A simple correlation between permeabilities and mercury capillary pressures. Journal of Petroleum Technology, 33, 12: 2498–2504. ##
[3]. Pittman E D (1992) Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone, AAPG Bulletin, 76. 2:191–198. ##
[4]. Dastidar R, Sondergeld C H Rai CS (2007) An Improved empirical permeability estimator from mercury injection for tight clastic rocks,  Petrophysics, 48, 3: 186–190. ##
[5]. Kolodize S (1980) Analysis of pore throat size and use of the Waxman-Smits equation to determine OOIP in spindle field. 55th Society of Petroleum Engineering Annual Technical Conference and Exhibition, Colorado, The USA. 9382-9386. ##
[6]. Hagiwara T (1986) Archie’s “m” for permeability, The Log Analyst, 27, 1: 39–42. ##
[7]. Katz A J, Thompson A H (1987) Uantitative prediction of permeability in porous rock, Physical review B, 34. 11: 8179–8181.
[8]. Gueguen Y, Palciausakas V (2006) Introduction to the physics of rocks, 1st edition, Princeton University Press, Princeton, 1-127. ##
[9]. Kesten H (2006) What is percolation?. Notices of the American Mathematical Society, 53, 5: 572–573. ##
[10]. Glover P W J, Zadjali I I, Frew K A (2006) Permeability prediction from MICP and NMR data using an electrokinatic approach, Geophysics, 71, 4: 49–60. ##                                
[11]. Nooruddin H, Enamul H, Al- Yousef H, Okasha T (2016) Improvement of permeability models using large mercury injection capillary pressure data set for middle east carbonate reservoir,  Journal of Porous Media, 19, 5: 405–422. ##
[12]. Huet C, Rushing J, Newsham K E, Blasingame T A (2005) A Modified Purcell model for estimating absolute permeability from mercury injection capillary pressure data, The 2005 International Technology Conference, Doha, Qatar. ##
[13]. Nooruddin H, Al-Yousef H, Okasha T (2014) Comparison of permeability Models using mercury injection capillary pressure data on carbonate rock samples, Journal of Petroleum Science and Engineering, 121: 9-22. ##
[14]. U.S. Energy Information Administration (2021), Iran Hydrocarbon’ Fields. https://www.eia.gov/international/analysis/country/IRN/background, July 16. ##
[15]. Al-Husseini M I (2000) Origin of the Arabian plate structures: Amar collision and Najd Rift, GeoArabia. 5##: 27–542.
[16]. Szabo F., Kheradpir A (1978) Permian and Triassic stratigraphy, zagros basin, south-west Iran, Journal of Petroleum Geology, 1. 2: 57-82. ##
[17]. Alsharhan A S (2006) Sedimentological character and hydrocarbon parameters of the middle Permian to early Triassic Khuff formation, The United Arab Emirates, GeoArabia, 11, 3: 121–158. ##  
[18]. Konert G, Afifi A  M, Al-Hajri S A, Drost H J (2001) Paleozoic stratigraphy and hydrocarbon habitat of the Arabian plate,  GeoArabia, 6, 3: 407–442. ##
[19]. Tavakoli V., Rahimpour-Bonab H. and Esrafili-Dizaji B (2011) Diagenetic controlled reservoir quality of South Pars gas field, an integrated approach,  Geoscience Journal, 343: 55-71. ##
[20]. Rahimpour-Bonab H, Asadi-Eskandar A, Sonei R (2009) Effects of the Permian–Triassic boundary on reservoir characteristics of the South Pars gas field, Persian Gulf Geology Journal, 44, 3: 341-364. ##
[21]. Moradpour M, Zamani Z, Moallemi S A (2008) Controls on reservoir quality in the lower Triassic Kangan formation, southern Persian Gulf, Journal of Petroleum Geolgy, 31, 4: 367-386. ##
[22]. Tavakoli V,  Jamalian A (2018) Microporosity evolution in Iranian reservoirs, Dalan and Dariyan formations, the central Persian Gulf, Journal of Petroleum Science and Engineering, 52: 155 -165. ##