تخمین فشار منفذی یکی از میادین گازی جنوب غربی ایران با استفاده از نگاره‌های چاه و داده‌های لرزه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی نقت و گاز، دانشگاه صنعتی سهند، تبریز، ایران

2 دانشکده مهندسی نفت و گاز، دانشگاه صنعتی سهند، تبریز، ایران

چکیده

تخمین و پیش‌بینی فشار منفذی امری ضروری برای جلوگیری از مخاطرات ناشی از حفاری در مناطق با فشار منفذی بالا است. با پیش‌بینی فشار منفذی می‌توان در برنامه‌ریزی چاه‌ها، لوله‌گذاری و وزن گل حفاری مناسب منطقه از این اطلاعات استفاده نمود. امروزه همچنین به‌دلیل هزینه بالای ابزار‌های اندازه‌گیری مستقیم فشار منفذی استفاده از روش‌های غیرمستقیم مقرون‌به‌صرفه‌تر هستند. هدف اصلی این تحقیق تخمین و پیش‌بینی فشار منفذی با استفاده از نگاره‌های چاه و داده‌های لرزه‌ای با استفاده از روش‌ها مختلف و مقایسه کارایی آن‌ها است. در روش چاه‌نگاری، فشار منفذی طبق روابط ارائه شده توسط ایتون با سه روش که از نگاره‌های مقاومت ویژه، سونیک و سرعت استفاده می‌کند تخمین زده شد. در ادامه، با به‌کارگیری روش باورز، فشار روباره با استفاده از اطلاعات نگاره چگالی محاسبه شد و سپس با استفاده از رابطه بین سرعت و تنش موثر ، تنش موثر  محاسبه و درنهایت، فشار منفذی با استفاده از رابطه ترزاقی تخمین زده شد. در مرحله بعد، با استفاده از داده‌های لرزه‌نگاری سه‌بعدی و با به‌کارگیری دو روش سرعت ایتون و باورز، فشار منفذی به‌صورت مکعب سه‌بعدی تخمین زده شد. سپس با استفاده از اطلاعات فشاری یکی از چاه‌های موجود، مکعب‌های سه‌بعدی تخمین زده شده مورد ارزیابی قرار گرفتند. نتایج این مطالعه نشان می‌دهد روش سرعت ایتون با خطای 7/9% انطباق خوبی را با داده‌های فشار اندازه‌گیری شده در محل چاه دارد و مناسب‌ترین گستردگی فضایی فشار را در عمق‌های مخزنی و همچنین در مناطق سطحی‌تر ارائه می‌کند؛ ولی روش سرعت باورز به‌دلیل حساسیت زیاد آن به‌وجود داده‌های فشار اندازه‌گیری شده، نتایج خوبی در مناطق کم‌عمق نداشته است. همچنین روش‌های مقاومت ویژه و سونیک ایتون همراه با خطای بالایی بوده‌اند؛ بنابراین، روش سرعت ایتون در مناطق مشابه برای تخمین فشار منفذی پیشنهاد می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Pore Pressure Estimation of One of the Gas Fields in Southwestern Iran Using Well Log and Seismic Data

نویسندگان [English]

  • Abolfazl Pourhassan Heris 1
  • Reza Falahat 2
1 Faculty of Petroleum Engineering, Sahand University of Technology, Tabriz, Iran
2 Faculty of Petroleum Engineering, Sahand University of Technology, Tabriz, Iran
چکیده [English]

Estimating and predicting pore pressure is essential to avoid drilling hazards in areas with high pore pressure. By predicting the pore pressure, this information can be used in  the wells planning, the optimum weight of drilling mud, finding the new exploration targets and etc. The main purpose of this study is to estimate the pore pressure using well logs and seismic data and  to compare their performance. In the well logging method, the pore pressure was estimated employing the relationships presented by Eaton in 1975 in three different ways that uses the resistivity, sonic and velocity logs. Then, in 1995, utilizing  Bowers equations, the overburden pressure was calculated from density log, and then the effective stress was estimated using the velocity relationship. Finally, the pore pressure was estimated using the Terzaghi relationship. In the next step, using three-dimensional seismic data and seismic inversion products the pore pressure was estimated in a three-dimensional cube employing Eton and Bowers methods. The estimated three-dimensional cubes were then assessed with the pressure data in the existing wells. The results of this study show that the Eaton velocity method with an error of 9.7% represent the good consistency with the measured data at the well location. It also provides the most appropriate spatial distribution of pressure at the reservoir and shallower depths. Therefore, Eaton velocity method is proposed on the similar regions for the pore pressure estimations.

کلیدواژه‌ها [English]

  • Pore Pressure Prediction
  • High Pressure
  • Well Logging
  • Seismic Data
  • Eaton
  • Bowers
[1]. محمدی، م.، سلیمانی، ب. و محمودیان، م.، (1396). پیش‌بینی فشار غیرعادی سازند با استفاده از داده‌های سرعت لرزه‌ای سه‌بعدی، میدان کوپال، مجله پژوهش نفت، 27 (97). 115-103.##
[2]. آزادپور، م. و شـادمنامن، ن. (1395). بررسـی مکانیزم‌هـای ایجـاد فشـار منفـذی بـالا در یکـی از میادیـن هیدروکربنـی جنـوب ایـران، مجلـه پژوهـش نفـت، 88، 160-147. ##
[3]. آدیــم، ع.، ریاحــی، م. ع. و باقــری، م. (1397). تخمیــن فشــار منفــذی بــه روش‌های ایتــون و بــاورز بــا اســتفاده از داده‌های لرزه‌ای و چاه‌پیمایی: نشـریه پژوهش‌های کاربـردی ژئوفیزیـک، 4(2). 275-267. ##
[4]. لیثی، ا. و فلاحت، ر.، (1400). بررسی و مقایسه روش‌های مرسوم تخمین تخلخل با استفاده از داده‌های لرزه‌نگاری در یکی از میادین نفتی خلیج فارس، مجله پژوهش نفت، 119، 97-88. ##
[5]. نصرت، ا.، (1386). پیش‌بینی فشار منفذی توسط نشانگرهای لرزه‌ای سه‌بعدی: پایان‌نامه کارشناسی ارشد مهندسی اکتشاف نفت، دانشکده مهندسی معدن، متالوژی و نفت، دانشگاه صنعتی امیرکبیر. ##
[6]. سلیمانی، ح. ر. (1391). پیش‌بینی فشار منفذی با استفاده از وارون‌سازی و تحلیل سرعت لرزه‌ای: مجلة فیزیک زمین و فضا، 38(4). 70 -57. ##
[7]. Kumar B. (2011). Pore pressure prediction from well logs and seismic data, SPG, 5-11. ##
[8]. Stunes, S. (2012). Methods of pore pressure detection from real-time drilling data: petroleum engineering and applied geophysics, Norwegian University of Science and Technology, hdl.handle.net/11250/239811. ##
[9]. Eaton, B. A. (1972). The effect of overburden stress on geopressures prediction from well logs: Journal of Petroleum Technology, 3719, 929-934, doi.org/10.2118/3719-PA. ##
[10]. Eaton, B. A. (1975). The equation for geopressure prediction from well logs: Paper SPE 5544 Presented at The Fall Meeting of The Society of Petroleum Engineers, Dallas TX, doi.org/10.2118/5544-MS. ##
[11]. Bowers, G. L. (1995). Pore pressure estimation from velocity data: accounting for over pressure mechanisms besides under compaction, SPE Drill & Compl 10 (02): 89–95, doi.org/10.2118/27488-PA. ##
[12]. Gardner, G. H. F., Gardner, L. W., & Gregory, A. (1974). Formation velocity and density: the diagnosic basics for stratigraphic traps: Geophysics, 39(6). 770-780, doi.org/10.1190/1.1440465. ##
[13]. Dalvand, M., & Falahat, R. (2021). A new rock physics model to estimate shear velocity log, Journal of Petroleum Science and Engineering, 196, 107697, doi.org/10.1016/j.petrol.2020.107697. ##