طراحی حسگر نرم داده محور به‌منظور پیش‌بینی کیفیت در فرآیند ناپیوسته صنعتی تولید رزین پلی‌استر

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی شیمی، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران.

چکیده

در این پژوهش، حسگر نرم داده محور بر مبنای روش مدل‌سازی پارامتر وابسته به متغیر حالت با استفاده از روش متغیر سودمند محلی (LIV) برای یک فرآیند ناپیوسته تولید رزین پلی‌استر طراحی شده است. برای مدل‌سازی حسگر نرم از داده‌های یک فرآیند صنعتی استفاده شده است. به‌منظور طراحی یک حسگر نرم دقیق، با در نظر گرفتن متغیر خروجی لحظه قبل در مجموعه متغیرهای ورودی، ماهیت پویای فرآیند در محاسبات لحاظ شده است. تعداد متغیرهای ورودی مدل نهایی از 23 متغیر تعیین شده توسط دانش فرآیندی به‌تنها 4 متغیر برای ویسکوزیته و 3 متغیر برای عدد اسیدیته در این مطالعه کاهش یافت. مدل نهایی حسگر نرم با داده‌های یک نوبت آموزش داده شد، در نتیجه زمان و میزان محاسبات به شکل قابل توجهی کاهش یافت. با به‌کارگیری روش LIV در فرآیند ناپیوسته تولید رزین پلی‌استر، مقادیر شاخص‌های عملکردی MAE، RMSE و R2 برای پیش‌بینی ویسکوزیته به‌ترتیب 0015/0، 0022/0 و 9999/0 و برای پیش‌بینی عدد اسیدیته به ترتیب 0030/0، 0094/0 و 9995/0 حاصل گردید. در مقایسه با سایر روش‌های مدل‌سازی حسگر نرم، مدل LIV متغیرهای شاخص کیفیت محصول را با تعداد نوبت‌ها و متغیرهای ورودی کم‌تر برای آموزش مدل اما با دقت بیشتر پیش‌بینی می‌نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design of Data-Driven Soft Sensor for Quality Prediction in Industrial Polyester Resin Production Process

نویسندگان [English]

  • Gohar Hadizadeh
  • Jafar Sadeghi
  • Mir Mohammad Khalilipour
  • Bahareh Bidar
Department of Chemical Engineering, Shahid Nikbakht Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

In the present study, a data-driven soft sensor is designed based on a state-dependent parameter modeling method using the Local Instrumental Variable (LIV) approach for a polyester resin production batch process. Data from an industrial process has been used for soft sensor modeling. To design an accurate soft sensor, the non-stationary characteristic of the process is considered in the calculations by adopting the output variable of the previous moment to the set of input variables. The number of input variables of the final model was reduced from 23 variables determined by process knowledge to only 4 variables for viscosity and 3 for acidity number in this study. The final model of the soft sensor was trained with the data of one batch, as a result, the time and amount of calculations were significantly reduced. The performance results of the LIV method by MAE, RMSE, and R2 indicators were obtained as 0.0015, 0.0019, and 0.9999 for viscosity and 0.0030, 0/0094, and 0/9995 for acidity number, respectively for the batch process of polyester resin production. Compared to other soft sensor modeling methods, the LIV model predicted the quality index variables (QIV) of the product more accurately using less number of batches and input variables for model training.

کلیدواژه‌ها [English]

  • Data-driven Soft Sensor
  • Quality Prediction
  • Local Instrumental Variable (LIV) Method
  • Batch Process
  • Polyester Resin
[1]. Jin H., Chen X., Yang, J., Wu, L., (2014). Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes. Computers & Chemical Engineering. 71, 77–93. doi: 10.1016/j.compchemeng.2014.07.014. ##
[2]. Shokry, A., Vicente, P., Escudero, G., Pérez-Moya, M., Graells, M., Espuña, A., (2018), Data-driven soft-sensors for online monitoring of batch processes with different initial conditions, Computers & Chemical Engineering, 118(4), 159-179. doi: 10.1016/j.compchemeng.2018.07.014##
[3]. Kadlec, P., Gabrys, B., Strandt, S., (2009). Data-driven soft sensors in the process industry, Computers & Chemical Engineering, 33(4), 795-814. doi: 10.1016/j.compchemeng.2008.12.012##
[4]. Jiang, Y., Yin, S., Dong, J., Kaynak, O., (2021), A Review on Soft Sensors for Monitoring, Control and Optimization of Industrial Processes, IEEE Sensors Journal, 21(11), 12868–12881. Doi: 10.1109/JSEN.2020.3033153. ##
[5]. Kaneko H., Arakawa M., Funatsu K., (2009), Development of a new soft sensor method using independent component analysis and partial least squares, AIChE Journal, 55(1), 87–98. Doi: 10.1002/aic.11648. ##
[6]. Sliskovic D., Grbic R., Hocenski Z., (2011), Methods for plant data-based process modeling in soft sensor development, Automatika, 52(4), 306–318. Doi: 10.1080/00051144.2011.11828430. ##
[7]. صادق صمیمی، ا.پ.، اسفندیاری بیات، ع. و امامزاده، ا.، (1401)، تعیین مشخصات جریان‌های دو فازی نفت- آب توسط شبکه عصبی کانولوشنی جریانی، پژوهش نفت، (127)32، 80-65. Doi:10.22078/PR.2022.4895.3189. ##
[8]. Li, Z., Jin, H., Dong, S., Qian, B., Yang, B., Chen, X., (2022), Semi-supervised ensemble support vector regression based soft sensor for key quality variable estimation of nonlinear industrial processes with limited labeled data, Chemical Engineering Research and Design, 179, 510-526. Doi:10.1016/j.cherd.2022.01.026. ##
[9]. Wang. Z.-H., Li, Y.-T., Wen, F.-C., (2023), A Novel In-Line Polymer Melt Viscosity Sensing System of Integrated Soft Sensor and Machine Learning, IEEE Sensors Journal, 23(11), 12181 – 12189. Doi: 10.1109/JSEN.2023.3267682. ##
[10]. Zhang, X., Song, C., Zhao, J., Xia, D., (2023), Gaussian mixture continuously adaptive regression for multimode processes soft sensing under time-varying virtual drift, Journal of Process Control, 124, 1-13. Doi: 10.1016/j.jprocont.2023.02.003. ##
[11]. شکری، س.، صادقی، م.ت. و احمدی مروست، م.، (1392)، ارائه روش ترکیبی پیش‌پردازش داده‌ها در ماشین بردار رگرسیون جهت پیش‌بینی کیفیت گازوییل پالایش شده، پژوهش نفت، (75)23، 116-102، doi: 10.22078/PR.2013.317.. ##
[12]. Shao, W., Tian, X., (2015), Adaptive soft sensor for quality prediction of chemical processes based on selective ensemble of local partial least squares models, Chemical Engineering Research and Design, 95, 113–132. Doi: 10.1016/j.cherd.2015.01.006. ##
[13]. Yeo, W.S., Saptoro, A., Kumar, P., Kano, M., (2023), Just-in-time based soft sensors for process industries: A status report and recommendations, Journal of Process Control, 128, 103025. Doi: 10.1016/j.jprocont.2023.103025. ##
[14]. Young, P.C., (1999), Nonstationary time series analysis and forecasting. Progress in Environmental Science, 1, 3-48. ##
[15]. Young, P.C., (2006), The data-based mechanistic approach to the modelling, forecasting and control of environmental systems. Annual Reviews in Control, 30(2), 169-182. Doi: 10.1016/j.arcontrol.2006.05.002. ##
[16]. Young, P.C., McCabe, A.P., Chotai, A., (2002), State-dependent parameter nonlinear systems: identification, estimation and control, IFAC Proceedings, 35(1), 441-446. Doi: 10.3182/20020721-6-ES-1901.00235. ##
[17]. Sadeghi, J., (2006), Modelling and control of non-linear systems using State-Dependent Parameter (SDP) models and Proportional-Integral-Plus (PIP) control method. Lancaster University: United Kingdom, Ph.D. Thesis. ##
[18]. بیدار، ب.، (1396)، طراحی حسگر نرم داده محور به‌منظور پیش‌بینی برخط کیفیت محصول در برج‌های تقطیر به‌روش پارامتر وابسته به متغیر حالت، دانشگاه سیستان و بلوچستان، زاهدان، ایران. ##
[19]. Tavakoli Dastjerd, F., Sadeghi, J., Shahraki, F., Khalilipour, M.M., Bidar, B., (2022), Soft sensor design using multi-state dependent parameter methodology based on generalized random walk method, IEEE Sensors Journal, 22(8). Doi: 10.1109/JSEN.2022.3147306. ##
[20]. Gharehbaghi, H., Sadeghi, J., (2016), A novel approach for prediction of industrial catalyst deactivation using soft sensor modeling, Catalysts, 6(7), 93-109. Doi: 10.3390/catal6070093. ##
[21]. Bidar, B., Sadeghi, J., Shahraki, F., Khalilipour, M.M., (2017), Data-driven soft sensor approach for online quality prediction using state dependent parameter models. Chemometrics and Intelligent Laboratory Systems, 162, 130-141. Doi: 10.1016/j.chemolab.2017.01.004. ##
[22]. Bidar, B., Khalilipour, M.M., Shahraki, F., Sadeghi, J., (2018), A data-driven soft-sensor for monitoring ASTM-D86 of CDU side products using local instrumental variable (LIV) technique, Journal of the Taiwan Institute of Chemical Engineers, 84, 49-59. Doi: 10.1016/j.jtice.2018.01.009. ##
[23]. Bidar, B., Shahraki, F., Sadeghi, J., Khalilipour, M.M., (2018), Soft sensor modeling based on multi-state-dependent parameter models and application for quality monitoring in industrial sulfur recovery process, IEEE Sensors Journal, 18(11), 4583–4591. Doi: 10.1109/JSEN.2018.2818886. ##
[24]. نعیمی، ف.، (1397)، طراحی حسگر نرم‌افزاری داده محور به‌منظورپیش‌بینی برخط کیفیت نفت خام در واحد نمک‌زدایی/ آب‌زدایی به روش پارامتر وابسته به متغیرحالت، دانشگاه سیستان و بلوچستان، زاهدان، ایران. ##
[25]. Bidar, B., Naimi Rad, F., Khalilipour, M.M., Shahraki, F., Sadeghi, J., (2020), Quality Soft Sensor Design for Crude Oil Desalting/Dehydration Unit Using Local Instrumental Variable (LIV) Approach, The 11th International Chemical Engineering Congress & Exhibition (IChEC 2020), Fouman, Iran. ##
[26]. حسن‌پور، ر.، (1398)، طراحی حسگر نرم داده محور با روش پارامتر وابسته به متغیر حالت به‌منظور پیش‌بینی کیفیت در فرآیند تنسی ایستمن، دانشگاه سیستان و بلوچستان، زاهدان، ایران. ##
[27]. حسن‌پور، ر.، خلیلی پور، م.م.، صادقی، ج.، بیدار، ب.، (1402)، ارزیابی کیفیت محصول مبتنی بر روش پارامتر وابسته به متغیر حالت با کاربرد در فرآیند تنسی ایستمن (TEP)، مجله کنترل، (1)17، 91-77. ##
[28]. Jiang, Y.,Yin, S., Dong, J., Kaynak, O., (2021), A review on soft sensors for monitoring, control, and optimization of industrial processes, IEEE Sensors Journal, 21(11), 12868 – 12881, 2021. Doi: 10.1109/JSEN.2020.3033153. ##
[29]. Wang, L. Jin, H., Chen, X.,  Dai, J., Yang, K.,Zhang, D., (2016), Soft sensor development based on the hierarchical ensemble of Gaussian process regression models for nonlinear and non-gaussian chemical processes. Industrial & Engineering Chemistry Research, 55(28), 7704–7719. Doi: 10.1021/acs.iecr.6b00240. ##
[30]. Frauendorfer, E., Wolf, A., Hergeth, W.D., (2010), Poly. ##
merization online monitoring, Chemical Engineer [31]. Rännar, S., MacGregor, J.F., Wold, S., (1998), Adaptive batch monitoring using hierarchical PCA, Chemometrics and Intelligent Laboratory Systems, 41(1), 73-81. Doi: 10.1016/S0169-7439(98)00024-0. ##
 
[32]. Li, C., Ye, H., Wang, G., Zhang, J., (2005), A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling, Chemical Engineering and Technology, 28(2),141-152. Doi: 10.1002/ceat.200407027. ##
[33]. Ahmed, F., Nazir, S., Yeo, Y.K.Y., (2009), A new soft sensor based on recursive partial least squares for online melt index predictions in grade-changing hdpe operations, Chemical Product and Process Modeling, 4(1). Doi: 10.2202/1934-2659.1271. ##
[34]. Facco, P., Doplicher, F., Bezzo, F., Barolo, M., (2009), Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process, Journal of Process Control, 19(3), 520-529. Doi: 10.1016/j.jprocont.2008.05.002. ##
[35]. Facco, P., Bezzo, F., Barolo, M., (2010), Nearest-neighbor method for the automatic maintenance of multivariate statistical soft sensors in batch processing, Industrial & Engineering Chemistry Research, 49(5), 2336-2347. Doi: 10.1021/ie9013919. ##
[36]. Souza, F.A., Araújo, R., (2014), Mixture of partial least squares experts and application in prediction settings with multiple operating modes, Chemometrics and Intelligent Laboratory Systems, 130, 192-202. Doi: 10.1016/j.chemolab.2013.11.006. ##
[37]. Ferreira, V., Souza, F.A., Araújo. R., (2017), Semi-supervised soft sensor and feature ranking based on co-regularised least squares regression applied to a polymerization batch process, 15th International Conference on Industrial Informatics (INDIN), Emden, Germany. Doi: 10.1109/INDIN.2017.8104781. ##
[38]. Abeykoon, C., (2018), Design and applications of soft sensors in polymer processing: A review, IEEE Sensors Journal, 19(8), 2801-2813. Doi: 10.1109/JSEN.2018.2885609 . ##
[39]. Yin, Z., Hao, K., Chen, L., Cai, X., Zhu, X., (2019), Forecasting the intrinsic viscosity of polyester based on improved extreme learning machine, International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China. Doi: 10.1109/ICAICA.2019.8873494. ##
[40]. He, Y.-L., Tian, Y., Xu, Y., Zhu, Q.-X., (2020), Novel soft sensor development using echo state network integrated with singular value decomposition: Application to complex chemical processes, Chemometrics and Intelligent Laboratory Systems, 200, 103981. Doi: 10.1016/j.chemolab.2020.103981. ##
[41]. Zhu, X., Hao, K., Xie, R., Huang, B., (2021), Soft sensor based on extreme gradient boosting and bidirectional converted gates long short-term memory self-attention network, Neurocomputing, 434, 126-136. Doi: 10.1016/j.neucom.2020.12.028.
[42]. Zhu, X., Damarla, S.K., Hao, K., Huang, B., Chen, H., Hua, Y., (2023), ConvLSTM and Self-Attention Aided Canonical Correlation Analysis for Multioutput Soft Sensor Modeling, IEEE Transactions on Instrumentation and Measurement, 72. Doi: 10.1109/TIM.2022.3225004. ##
[43]. Perera, Y.S., Ratnaweera, D.A.A.C., Dasanayaka, C.H., Abeykoon, C., (2023), The role of artificial intelligence-driven soft sensors in advanced sustainable process industries: A critical review, Engineering Applications of Artificial Intelligence, 121, 105988. Doi: 10.1016/j.engappai.2023.105988. ##
[44]. Scheirs, J., Long, T.E., (2005), Modern polyesters: Chemistry and technology of polyesters and copolyesters, John Wiley & Sons. ##
[45]. Deopura, B. L., Alagirusamy, R., Joshi, M., Gupta, b., (2008), Polyesters and polyamides, Woodhead Publishing in Textiles: Number 71, CRC press. ##