بررسی اثرات امتزاج‌پذیری، ترشوندگی و سرعت تزریق در تزریق دی اکسیدکربن در مقیاس حفره سنگ مخزن

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی شیمی‌و‌نفت، دانشگاه صنعتی شریف، تهران، ایران

چکیده

بررسی فرآیند تزریق CO2 در سنگ مخزن با هدف ذخیره‌سازی و کاهش اثرات زیست محیطی یا به‌منظور ازدیاد‌ برداشت ‌نفت می‌تواند به دو صورت مطالعات آزمایشگاهی یا شبیه‌سازی و در مقیاس‌های از حفره تا مخزن انجام شود. به هرحال، یکی از رویکرد‌‌های تحقیقاتی مؤثر برای بررسی عوامل مؤثر و سازوکار‌های حاکم بر جریان سیالات استفاده از مدل‌سازی و شبیه‌سازی عددی مقیاس حفره است.‌ اکثر مطالعات قبلی در این زمینه با به‌کار‌گیری محیط های متخلخل مصنوعی بوده که به‌درستی نمی‌تواند برهم کنش فضای حفرات واقعی و سیالات موجود را نشان دهد. در این کار پژوهشی برای بررسی عوامل مؤثر اثرگذار بر جریان دو‌فازی CO2 و نفت، از هندسه استخراج شده از یک برش دو بعدی از تصاویر میکرو سی‌تی یک نمونه سنگ واقعی استفاده شده و شبیه‌سازی با رویکرد میدان‌فازی و با حلگر عددی کامسول برروی آن پیاده‌سازی می‌شود. به‌طور خاص اثر امتزاج‌پذیری، ترشوندگی و سرعت تزریق در فرآیند تزریق CO2 بررسی و نتایج ضریب بازیافت نفت، میزان CO2 در جریان خروجی، و وابستگی آنها به ترشوندگی محیط سنگ، کشش سطحی و نرخ تزریق ارزیابی می‌گردد. نتایج نشان داد که کشش سطحی و ترشوندگی اثر قابل توجهی در روند جابه‌جایی دوفازی دارد، به‌طوری که به‌عنوان مثال، ترشوندگی بیشتر نمونه نسبت به سیال تزریقی باعث بهبود بازدهی فرآیند جابه‌جایی تا حدود ۲۵% گردید. البته میزان تاثیر سرعت تزریق CO2 همراه با افزایش نیرو ویسکوز بر ازدیاد‌برداشت‌نفت در مقادیر مقادیر کشش سطحی زیاد و کم رفتار متفاوتی نشان می‌داد. این نتایج در برخی موارد با نتایج قبلی برروی نمونه محیط‌های متخلخل مصنوعی متفاوت بوده و لذا نتایج این تحقیق می‌تواند در انتخاب شرایط ترشوندگی مناسب و سرعت بهینه تزریق در فرآیندهای واقعی تزریق CO2 کمک‌کننده باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

nvestigation of the Effects of Miscibility, Wettability, Injection Rate during CO2 Injection in Pore Scale of Reservoir Rocks

نویسندگان [English]

  • Mohsen Masihi
  • Hasti Firoozmand
Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
چکیده [English]

Investigation of the effective factors on the two fluid flow of CO2 injection in the reservoir rocks is important for optimizing such a process. In this study, the geometry extracted from a 2D section of the micro CT images of a real sandstone sample is used, and simulation of the two-phase flow (CO2 and oil) with the phase field approach have been implemented with Comsol software. In particular, the effect of miscibility, wettability, and injection rate is investigated, and the results of simulation such as oil recovery  and its dependence on the wettability, surface tension, and injection rate are evaluated. The results showed that surface tension and wettability have significant effects on the two-phase displacement so that, for example, more wettability towards the injected fluid improves the efficiency of the displacement process up to a 25%. The rate of CO2 injection can have different effects at various surface tension values, so the results of this study can be helpful in choosing the appropriate wettability condition and evaluating the optimal rate for real carbon dioxide injection.

کلیدواژه‌ها [English]

  • CO2 Injection
  • Miscibility
  • Wettability
  • Injection Rate
  • Pore Scale Simulation
[1]. PCC, (2018). IPCC Special Report on the impacts of global warming of 1.5 °C. Ipcc - Sr15.##
[2]. IPCC (2005). Special Report on CO2 Capture and Storage, 49.##
[3]. Ajayi T., Gomes J. S., and Bera A. (2019). A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Petroleum Science. 16(5) 1028-1063 doi: 10.1007/s12182-019-0340-8.##
[4]. Kaldi J. G., Gibson-Poole C. M., and Payenberg T. H. D. (2009). Geological Input to Selection and Evaluation of CO2 geosequestration sitesو AAPG Studies in Geology. 59 5-16 doi: 10.1306/13171230St59227.##
[5]. Lokhorst A.and Wildenborg T. (2005). Introduction on CO2 geological storage. Classification of storage options. Oil and Gas Science and Technology. 60(3) 513-515 doi: 10.2516/ogst:2005033.##
[6]. Alvarado V. and Manrique E. (2010). Enhanced oil recovery: An update review. Energies. 3(9) 1529-1575 doi: 10.3390/en3091529.##
[7]. Manrique E. J., Muci V. E., and Gurfinkel M. E. (2007). EOR field experiences in carbonate reservoirs in the United States. SPE Reservoir Evaluation and Engineering. 10(6) doi: 10.2118/100063-pa.##
[8]. Christensen J. R., Stenby E. H., and Skauge A. (2001). Review of WAG field experience. SPE Reservoir Evaluation and Engineering, 4(2) doi: 10.2118/71203-pa.##
[9]. Srivastava R. K., Huang S. S., and Dong M. (2000). Laboratory investigation of Weyburn CO2 miscible flooding. Journal of Canadian Petroleum Technology. 39(2) doi: 10.2118/00-02-04.##
[10]. Ghedan S. (2009). Global Laboratory Experience of CO2-EOR Flooding. SPE/EAGE Reservoir Characterization and Simulation Conference. doi: 10.3997/2214-4609-pdb.170.spe125581.##
[11]. Teklu T. W., Alameri W., Graves R. M., Kazemi H., and Al-Sumaiti A. M. (2016). Low-salinity water-alternating-CO2 EOR. Journal of Petroleum Science and Engineering. 142 101-118 doi: 10.1016/j.petrol.2016.01.031.##
[12]. Herring A. L., Harper E. J., Andersson L., Sheppard A., Bay B. K., and Wildenschild D. (2013). Effect of fluid topology on residual nonwetting phase trapping: Implications for geologic CO2 sequestration. Advances in Water Resources. 62 47-58 doi: 10.1016/j.advwatres.2013.09.015.##
[13]. Blunt et al. M. J. (2012). Pore-scale imaging and modelling. Advances in Water Resources. 51 197-216 doi: 10.1016/j.advwatres.2012.03.003.##
[14]. Ferrari A., Jimenez-Martinez J., Borgne T. le, Méheust Y., and Lunati I. (2015). Challenges in modeling unstable two-phase flow experiments in porous micromodels. Water Resources Research. 51(3) doi: 10.1002/2014WR016384.##
[15]. Saraf S. and Bera A. (2021). A review on pore-scale modeling and CT scan technique to characterize the trapped carbon dioxide in impermeable reservoir rocks during sequestration. Renewable and Sustainable Energy Reviews.144 doi: 10.1016/j.rser.2021.110986.##
[16]. Piri M. and Blunt M. J. (2005). Three-dimensional mixed-wet random pore-scale network modeling of two- And three-phase flow in porous media. I. Model description. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 71(2) doi: 10.1103/PhysRevE.71.026301.##
[17]. Wildenschild D., Vaz C. M. P., Rivers M. L., Rikard D., and Christensen B. S. B. (2002). Using X-ray computed tomography in hydrology: Systems, resolutions, and limitations. Journal of Hydrology. 267(3) doi: 10.1016/S0022-1694(02)00157-9.##
[18]. Flannery B. P., Deckman H. W., Roberge W. G., and Amico K. L. D. (1987). Three-dimensional x-ray microtomography. Science. 237(4821) doi: 10.1126/science.237.4821.1439.##
[19]. Kumar M. and Fogden A. (2010). Patterned wettability of oil and water in porous media. Langmuir. 26(6) doi: 10.1021/la903478q.##
[20]. Blunt M. J., Jackson M. D., Piri M., and Valvatne P. H. (2002). Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Advances in Water Resources. 25(8) doi: 10.1016/S0309-1708(02)00049-0##
[21]. Basirat F., Yang Z., and Niemi A. (2017). Pore-scale modeling of wettability effects on CO2–brine displacement during geological storage. Advances in Water Resources. 109 doi: 10.1016/j.advwatres.2017.09.004.##
[22]. Raeini A. Q., Blunt M. J., and Bijeljic B. (2012). Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. Journal of Computational Physics. 231(17) doi: 10.1016/j.jcp.2012.04.011.##
[23]. Sethian J. A. and Smereka P. (2003). Level set methods for fluid interfaces. Annual Review of Fluid Mechanics. 35 doi: 10.1146/annurev.fluid.35.101101.161105.##
[24]. Akhlaghi Amiri H. A. and Hamouda A. A. (2014). Pore-scale modeling of non-isothermal two phase flow in 2D porous media: Influences of viscosity, capillarity, wettability and heterogeneity. International Journal of Multiphase Flow. 61 doi: 10.1016/j.ijmultiphaseflow.2014.01.001.##
[25]. Joekar-Niasar V., Hassanizadeh S. M., and Dahle H. K. (2010). Non-equilibrium effects in capillarity and interfacial area in two-phase flow: Dynamic pore-network modelling. Journal of Fluid Mechanics. 655 doi: 10.1017/S0022112010000704.##
[26]. Yue P., Zhou C., Feng J. J., Ollivier-Gooch C. F., and Hu H. H. (2006). Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing, Journal of Computational Physics. 219 (1) doi: 10.1016/j.jcp.2006.03.016.##
[27]. Hu H. H., Patankar N. A., and Zhu M. Y. (2001). Direct numerical simulations of fluid-solid systems using the arbitrary lagrangian-eulerian techniqueو Journal of Computational Physics. 169(2) doi: 10.1006/jcph.2000.6592.
[28]. Huang W. (1994). Moving mesh methods based on moving mesh partial differential equations. Journal of Computational Physics. 113(2) doi: 10.1006/jcph.1994.1135.##
[29]. Tryggvason G., Bunner B.,  Esmaeeli A. et al. (2001). A Front-Tracking Method for the Computations of Multiphase Flow. Journal of Computational Physics. 169(2) doi: 10.1006/jcph.2001.6726.##
[30]. Popinet S. and Zaleski S. (1999). A front-tracking algorithm for accurate representation of surface tension. International Journal for Numerical Methods in Fluids. 30(6) doi: 10.1002/(sici)1097-0363(19990730)30:6<775::aid-fld864>3.0.co;2-%23.##
[31]. Meakin P. and Tartakovsky A. M. (2009). Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Reviews of Geophysics. 47(3) doi: 10.1029/2008RG000263.##
[32]. Hirt C. W. and Nichols B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. 
Journal of Computational Physics. 39(1) doi: 10.1016/0021-9991(81)90145-5.##
[33]. Sussman M. (1994). A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics. 114(1) doi: 10.1006/jcph.1994.1155.##
[34]. Sun D. L. and Tao W. Q. (2010). A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows. International Journal of Heat and Mass Transfer. 53(4) doi: 10.1016/j.ijheatmasstransfer.2009.10.030.##
[35]. Alpak F. O., Riviere B., and Frank F. (2016). A phase-field method for the direct simulation of two-phase flows in pore-scale media using a non-equilibrium wetting boundary condition. Computational Geosciences. 20(5) doi: 10.1007/s10596-015-9551-2.##
[36]. Sussman M.and Puckett E. G. (2000). A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows. Journal of Computational Physics. 162(2) doi: 10.1006/jcph.2000.6537.##
[37]. Olsson E. and Kreiss G. (2005). A conservative level set method for two phase flow. Journal of Computational Physics. 210(1) 225–246 doi: 10.1016/j.jcp.2005.04.007.##
[38]. Olsson E., Kreiss G., and Zahedi S. (2007). A conservative level set method for two phase flow II. Journal of Computational Physics. 225(1) doi: 10.1016/j.jcp.2006.12.027.##
[39]. van der Waals J. D. (1979). The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. Journal of Statistical Physics. 20(2) doi: 10.1007/BF01011514.##
[40]. Cahn J. W. and Hilliard J. E. (1958). Free energy of a nonuniform system. I. Interfacial free energy. The Journal of Chemical Physics. 28(2) doi: 10.1063/1.1744102.##
[41]. Jacqmin D. (1999). Calculation of two-phase navier-stokes flows using phase-field modeling, Journal of Computational Physics, 155(1), doi: 10.1006/jcph.1999.6332.##
[42]. Chiu P. H. and Lin Y. T. (2011). A conservative phase field method for solving incompressible two-phase flows, Journal of Computational Physics, 230(1) doi: 10.1016/j.jcp.2010.09.021.##
[43]. Bogdanov I., Jardel S., Turki A., and Kamp A. (2010). Pore-Scale Phase Field Model of Two-Phase Flow in Porous Medium.##
[44]. Badalassi V. E., Ceniceros H. D., and Banerjee S. (2003). Computation of multiphase systems with phase field models. Journal of Computational Physics.190(2) doi: 10.1016/S0021-9991(03)00280-8.##
[45]. Zhu G., Yao J., Li A., Sun H., and Zhang L. (2017). Pore-scale investigation of carbon dioxide-enhanced oil recovery, Energy and Fuels, 31(5) doi: 10.1021/acs.energyfuels.7b00058.##
[46]. Rokhforouz M. R. and Akhlaghi Amiri H. A. (2019). Effects of grain size and shape distribution on pore-scale numerical simulation of two-phase flow in a heterogeneous porous medium. Advances in Water Resources.124 doi: 10.1016/j.advwatres.2018.12.008.##
[47]. Guo et al Y. (2019). A pore-scale investigation of residual oil distributions and enhanced oil recovery methods,” Energies.12(19) doi: 10.3390/en12193732.##
[48]. Ma, Q., Zheng, Z., Fan, J., Jia, J., Bi, J., Hu, P., Wang Q., Li M., Wei W. and Wang, D. (2021). Pore-scale simulations of CO2/oil flow behavior in heterogeneous porous media under various conditions, Energies, 14(3), 533. 533 doi: 10.3390/en14030533.##
[49]. Song R., Tang Y. Yao Wang  Xie R. and Liu J. (2022).  Pore-scale numerical simulation of CO2–oil two-phase flow: a multiple-parameter analysis based on phase-field method, Energies 2023, 16(1): 82, doi.org/10.3390/en16010082.##
[50]. Ouyang L. B. (2011). New correlations for predicting the density and viscosity of supercritical carbon dioxide under conditions expected in carbon capture and sequestration operations. Open Petroleum Engineering Journal. 4(1) doi: 10.2174/1874834101104010013.##
[51]. Pereira L. M. C., Chapoy A., Burgass R., and Tohidi B. (2016). Measurement and modelling of high pressure density and interfacial tension of (gas + n-alkane) binary mixtures. Journal of Chemical Thermodynamics. 97 doi: 10.1016/j.jct.2015.12.036.##
[52]. Choudhary N., Narayanan Nair A. K., Che Ruslan M. F. A., and Sun S. (2019). Bulk and interfacial properties of decane in the presence of carbon dioxide, methane, and their mixture, Scientific Reports. 9(1) doi: 10.1038/s41598-019-56378-y.##
[53]. Arif M., Barifcani A., and Iglauer S. (2016). Solid/CO2 and solid/water interfacial tensions as a function of pressure, temperature, salinity and mineral type: Implications for CO2-wettability and CO2 geo-storage. International Journal of Greenhouse Gas Control. 53 doi: 10.1016/j.ijggc.2016.08.020.##
[54]. Idowu N. A. and Blunt M. J. (2010). Pore-scale modelling of rate effects in waterflooding. Transport in Porous Media. 83(1) doi: 10.1007/s11242-009-9468-0.##
[55]. Zacharoudiou I., Boek E. S., and Crawshaw J. (2018). The impact of drainage displacement patterns and Haines jumps on CO2 storage efficiency. Scientific Reports. 8(1), doi: 10.1038/s41598-018-33502-y.##