تخمین توابع اشباع با مدل تکه‌ای پیوسته با استفاده از الگوریتم بهینه‌سازی ژنتیک چند هدفه

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی نفت و گاز، پژوهشکده نفت و گاز سهند، دانشگاه صنعتی سهند، تبریز

چکیده

تراوایی نسبی یکی از پارامترهای دارای نقش کلیدی در مطالعات مهندسی مخزن و ازدیاد برداشت است. برای تعیین مقادیر این پارامتر از روش‌های مختلفی شامل مطالعات آزمایشگاهی، روابط تجربی و تحلیلی استفاده می‌گردد. در این مطالعه از تطابق تاریخچه داده‌های تولیدی آشام و تخلیه (داده‌های افت فشار و نفت تولیدی تجمعی) و نتایج شبیه‌سازی سیلاب‌زنی در مغزه با در نظر گرفتن مدل‌های تجربی مختلف مانند مدل‌های Corey،ا Brooks-Corey و مدل تحلیلی تکه‌ای پیوسته برای تخمین منحنی‌های تراوایی نسبی استفاده گردید. برای این کار الگوریتم‌های بهینه‌سازی هوشمند تک هدفه و چند هدفه ژنتیک برای تعیین ضرایب مدل‌های تجربی و مدل تکه‌ای پیوسته به‌کار گرفته شد. ضرایب مدل‌های فوق و مقدار میانگین مربعات خطا به‌ترتیب به‌عنوان پارامترهای تصمیم‌گیری و تابع هدف در نظر گرفته شد. در فرآیند آشام مدل Corey با بهینه‌سازی تک هدفه و مدل تکه‌ای پیوسته با بهینه‌سازی چند هدفه عملکرد بهتری داشتند. در فرآیند تخلیه مدل تکه‌ای پیوسته با بهینه‌سازی چند هدفه و مدل Brooks-Corey با بهینه‌سازی چند هدفه بهترین عملکرد را داشتند. نتایج نشان‌دهنده‌ عملکرد مناسب مدل تکه‌ای پیوسته برای فرآیندهای آشام و تخلیه با ضرایب همبستگی به‌ترتیب برابر با 9957/0 و 9932/0 با استفاده از الگوریتم ژنتیک تک هدفه بود. علاوه‌براین جبهه‌ای از پاسخ‌های بهینه به‌کمک الگوریتم بهینه‌سازی ژنتیک چند هدفه ایجاد گردید و در نهایت به‌منظور تصمیم‌گیری درخصوص بهترین پاسخ از الگوریتم‌های تصمیم‌گیری استفاده گردید. نتایج به‌دست آمده دقت بالای کاربرد مدل تکه‌ای پیوسته را برای فرآیند‌های آشام و تخلیه با ضرایب همبستگی به‌ترتیب برابر با 9916/0 و 9958/0 نشان داد. بنابراین، مدل تکه‌ای پیوسته به‌عنوان یک روش کارآمد برای تخمین تراوایی نسبی براساس تطابق داده‌های آزمایشگاهی و شبیه‌سازی پیشنهاد می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using Multi-Objective Optimization Genetics Algorithm for Co-estimation of Saturation Functions by Piecewise Model

نویسندگان [English]

  • Majid Sheshbolouky
  • Hossein Kheirollahi
  • Elnaz Khodapanah
Faculty of Petroleum and Natural Gas Engineering, Sahand Oil and Gas Research Institute, Sahand University of Technology, Tabriz, Iran
چکیده [English]

Saturation/flow functions, i.e., water and oil relative permeability and capillary pressure are the most critical input parameters that play a key role in porous media simulation studies and forecasting the fluids recovery. Various methods including laboratory tests (steady or unsteady core flooding), and mathematical methods can be utilized to measure or estimate the flow function curves. In this research, history matching technique was performed using optimization genetic algorithms to adjust the parameters of the proposed model based on laboratory water flooding data (pressure drop and cumulative oil production) and the results of core flooding simulation. To do so, multi-objective genetic algorithms were employed to find optimum solutions for piecewise model and then the results are compared with several empirical models (e.g. Corey and Brooks-Corey models). History matching results showed that single objective optimization, i.e., considering cumulative oil production as an objective function provides a good fit for Corey’s model (R-squared= 99.56%) and single and multi-objective optimization lead to the best fits, respectively, with the accuracies of 99.57 and 99.16% for piecewise model during the imbibition process. Moreover, the drainage history matching results showed that the piecewise model exhibits the best performance employing the single objective and multi-objective optimization algorithms with the accuracies of 99.32 and 99.85%, respectively. Overall, the piecewise model can be utilized to address the history matching problem using multi-objective optimization and estimate the flow functions curves. Hence, it is proposed as an efficient method for estimating fluid relative permeability and capillary pressure functions based on experimental and simulation data.

کلیدواژه‌ها [English]

  • Relative Permeability
  • Piecewise Model
  • Optimization
  • Genetics Algorithm
  • History Matching
[1]. Ahmed, T. (2019). Reservoir engineering handbook (5th ed.). doi:10.1016/c2016-0-04718-6.##
[2]. Xu, P., Qiu, S., Yu, B., & Jiang, Z. (2013). Prediction of relative permeability in unsaturated porous media with a fractal approach. International Journal of Heat and Mass Transfer, 64, 829–837. doi:10.1016/j.ijheatmasstransfer.2013.05.003. ##
[3]. Li, K., and Horne, R. N. (2006). Comparison of methods to calculate relative permeability from capillary pressure in consolidated water-wet porous media. Water Resources Research, 42(6). doi:10.1029/2005wr004482. ##
[4]. Hussain, F., Cinar, Y., and Bedrikovetsky, P. (2010). Comparison of methods for drainage relative permeability estimation from displacement tests. All Days, Presented at the SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA. doi:10.2118/129678-ms. ##
[5]. نوربخش، م.، خداپناه، ا. و طباطبایی‌نژاد، س. ط. (1392). بررسی تطابق تاریخ‌چه یکی از مخازن ایران به‌کمک مدل‌های تراوایی نسبی و فشار مویینگی. دومین همایش علمی مهندسی مخازن هیدروکربوری، علوم و صنایع مرتبط. ##
[6]. Sakhaei, Z., Azin, R., and Osfouri, S. (2017). Optimization of empirical and analytical relative permeability correlations in oil - water systems. Journal of Petroleum Resrch, 27(96–1): 186–199. doi:10.22078/pr.2017.1789.1872. ##
[7]. Purcell, W. R. (1949). Capillary pressures - their measurement using mercury and the calculation of permeability therefrom, Journal of Petroleum Technology, 1(02): 39–48. doi:10.2118/949039-g. ##
[8]. Gates, J. I., and Lietz, W. T. (1950, January). Relative permeabilities of California cores by the capillary-pressure method. In Drilling and production practice. OnePetro. ##
[9]. Fatt, I., and Dykstra, H. (1951). Relative permeability studies, Journal of Petroleum Technology, 3(09): 249–256. doi:10.2118/951249-g. ##
[10]. Burdine, N. T. (1953). Relative permeability calculations from pore size distribution data, Journal of Petroleum Technology, 5(03): 71–78. doi:10.2118/225-G. ##
[11]. Corey, A. T. (1954). The interrelation between gas and oil relative permeabilities. Producers monthly, 38-41. ##
[12]. Johnson Jr, C. E. (1968). Graphical determination of the constants in the Corey equation for gas-oil relative permeability ratio, Journal of Petroleum Technology, 20(10): 1111-1113, doi:10.2118/2346-pa. ##
[13]. Honarpour, M. M. (2018). Relative permeability of petroleum reservoirs. London, England: Routledge. ##
[14]. Brooks, R. H., and Corey, A. T. (1966). Properties of porous media affecting fluid flow, Journal of the irrigation and drainage division, 92(2): 61-88, doi:10.1061/JRCEA4.0000425. ##
[15]. Honarpour, M., Koederitz, L. F., and Harvey, A. H. (1982). Empirical equations for estimating two-phase relative permeability in consolidated rock, Journal of Petroleum Technology, 34(12): 2905-2908, doi:10.2118/9966-PA. ##
[16]. Ibrahim, M. N. M., and Koederitz, L. F. (2000). Two-phase relative permeability prediction using a linear regression model, SPE-65631-MS, doi:10.2118/65631-MS. ##
[17]. Al-Fattah, S. M. (2003). Empirical equations for water/oil relative permeability in Saudi sandstone reservoirs, All Days. Presented at the Nigeria Annual International Conference and Exhibition, Abuja, Nigeria. doi:10.2118/85652-ms. ##
[18]. Shen, P., Zhu, B., Li, X.-B., and Wu, Y.-S. (2006). The influence of interfacial tension on water/oil two-phase relative permeability. All Days. Presented at the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, USA. doi:10.2118/95405-ms. ##
[19]. Mosavat, N., Torabi, F., & Zarivnyy, O. (2013). Developing new Corey-based water/oil relative permeability correlations for heavy oil systems, All Days. Presented at the SPE Heavy Oil Conference-Canada, Calgary, Alberta, Canada, doi:10.2118/165445-ms. ##
[20]. Xu, J., Guo, C., Jiang, R., and Wei, M. (2016). Study on relative permeability characteristics affected by displacement pressure gradient: Experimental study and numerical simulation, Fuel (London, England), 163, 314–323. doi:10.1016/j.fuel.2015.09.049. ##
[21]. Archer, J. S., and Wong, S. W. (1973). Use of a reservoir simulator to interpret laboratory waterflood data, Society of Petroleum Engineers Journal, 13(06): 343–347. doi:10.2118/3551-PA. ##
[22]. Sigmund, P. M., and McCaffery, F. G. (1979). An improved unsteady-state procedure for determining the relative-permeability characteristics of heterogeneous porous media, (includes associated papers 8028 and 8777). Society of Petroleum Engineers Journal, 19(01): 15-28, doi.org/10.2118/6720-PA. ##
[23]. Watson, A. T., Seinfeld, J. H., Gavalas, G. R., and Woo, P. T. (1980). History matching in two-phase petroleum reservoirs, Society of Petroleum Engineers Journal, 20(06): 521–532. doi:10.2118/8250-pa. ##
[24]. Kulkarni, K. N., and Datta-Gupta, A. (2000). Estimating relative permeability from production data: A streamline approach, SPE Journal, 5(04): 402–411. doi:10.2118/66907-pa. ##
[25]. پروازدوانی، م.، مسیحی، م.، عباسی، س.، شهرآبادی، ع.، و کاظم‌زاده، ع. (1392). اصلاح توابع تراوایی نسبی حاصل از آزمایش‌های جابه جایی نفت- گاز در شرایط نزدیک امتزاجی با استفاده از مدل‌سازی معکوس، پژوهش نفت، 23(74): 57-71. ##
[26]. علیزاده. ا، گنجه قزوینی. م.، نجاری لواسانی، ف. و سلیمی، م. ع. (1392). مقایسه روش عددی تطابق تاریخ‌چه و روش تحلیلی JBN برای تخمین خواص ویژه سنگ مخزن در آزمایش سیلاب‌زنی در حالت ناپایا، اکتشاف و تولید نفت و گاز، 54–57. ##