[1]. Sheikholeslam, A., Jalali, S.E., Ramezanzadeh, A., & Shojaei, H. (2023). Analytical evaluation of sand production process for oil and gas wells in the Asmari reservoir of the Ahwaz field. Journal of Petroleum Geomechanics, 6 (4), 25-50. doi.org/10.22107/JPG.2023.408338.1203. ##
[2]. Venkitaraman, A., Manrique, J.F., & Poe, B.D., Jr. (2001). A comprehensive approach to completion optimization. SPE Eastern Regional Meeting. doi.org/10.2118/72386-MS. ##
[3]. Roostapour, A. & Yildiz, T. (2005). Post-perforation flow models for API recommended practices 19B. SPE Production Operations Symposium. doi.org/10.2118/94245-MS. ##
[4]. Pasztor, A.V. & Toth, A. (2017). Effect of perforation parameters on the productivity of geothermal wells. MultiScience - XXXI. microCAD International Multidisciplinary Scientific Conference. University of Miskolc, Hungary. doi.org/10.26649/musci.2017.002. ##
[5]. Behrmann, L.A., Hughes, K., Johnson, A.B., & Walton, I.C. (2002). New underbalanced perforating technique increases completion efficiency and eliminates costly acid stimulation. SPE Annual Technical Conference and Exhibition. doi.org/10.2118/77364-MS. ##
[6]. Economides, M.J. (2013). Petroleum production systems. ##
[7]. Bell, W., Sukup, R., & Tariq, S. (1995). Perforating, in SPE Monograph Volume 16. Richardson, TX. doi: archive.org/details/perforating0000bell.##
[8]. According to a personal communication with Sani, M. (2024). ##
[9]. According to a personal communication with King, G.E. (2023). ##
[10]. Bellarby, J. (2009). Well completion design. ##
[11]. Locke, S. (1981). An advanced method for predicting the productivity ratio of a perforated well. Journal of Petroleum Technology, 33 (12), 2481-2488. doi.org/10.2118/8804-PA.##
[12]. Karakas, M. & Tariq, S.M. (1991). Semianalytical productivity models for perforated completions. SPE Production Engineering, 6 (01), 73-82. doi.org/10.2118/18247-PA. ##
[13]. Behrmann, L.A. & Halleck, P.M. (1988). Effects of wellbore pressure on perforator penetration depth. 63rd SPE Annual Technical Conference and Exhibition. Houston, Texas. doi.org/10.2118/18243-MS. ##
[14]. Morita, N. (2022). Geomechanics of sand production and sand control. ##
[15]. Sarmadivaleh, M., Nabipour, A., Asadi, M.S., Sabogal Polania, J.M., & Rasouli, V. (2010). Identification of porosity damaged zones around a perforation tunnel based on DEM simulation. ISRM International Symposium - 6th Asian Rock Mechanics Symposium. ##
[16]. Yew, C.H. & Zhang, X. (1993). A study of the damage zone created by shaped-charge perforating. Rocky Mountain Regional/Low Permeability Reservoirs Symposium. Denver, CO, U.S.A. doi.org/10.2118/25902-MS. ##
[17]. Papamichos, E. & Furui, K. (2019). Analytical models for sand onset under field conditions. Journal of Petroleum Science and Engineering, 172 171-189. doi.org/10.1016/j.petrol.2018.09.009. ##
[18]. Zhang, J., Standifird, W.B., & Shen, X. (2007). Optimized perforation tunnel geometry, density and orientation to control sand production. European Formation Damage Conference. doi.org/10.2118/107785-MS. ##
[19]. Venkitaraman, A., Behrmann, L.A., & Noordermeer, A.H. (2000). Perforating requirements for sand prevention. SPE International Symposium on Formation Damage Control. doi.org/10.2118/58788-MS. ##
[20]. Zhang, Z., Guo, J., Liang, H., & Liu, Y. (2021). Numerical simulation of skin factors for perforated wells with crushed zone and drilling-fluid damage in tight gas reservoirs. Journal of Natural Gas Science and Engineering, 90. doi.org/10.1016/j.jngse.2021.103907. ##
[21]. Asadi, M. & Preston, F.W. (1994). Characterization of the jet perforation crushed zone by SEM and image analysis. SPE Formation Evaluation, 9 (02), 135-139. doi.org/10.2118/22812-PA. ##
[22]. Pucknell, J.K. & Behrmann, L.A. (1991). An investigation of the damaged zone created by perforating. 66th SPE Annual Technical Conference and Exhibition. Dallas, Texas (511–522). doi.org/10.2118/22811-MS. ##
[23]. Craddock, G.G., Smith, J., & Haggerty, D. (2018). Perforation crushed zone characteristics in a subsurface sandstone. SPE International Conference and Exhibition on Formation Damage Control. doi.org/10.2118/189483-MS. ##
[24]. Martin, A., Behrmann, L., Venkitaraman, A., & Rogers, G. (2005-2007). Perforation. Schlumberger private seminar. Aberdeen, UK. ##
[25]. Grove, B.M. (2020). Downhole tool for creating evenly-spaced perforation tunnels. WIPO: WO 2020/256741 A1. Halliburton Co. patents.google.com/patent/WO2020256741A1.##
[26]. Behrmann, L.A., Lopez De Cardenas, J., & Parrott, R.A. (2000). Optimizing charge phasing of a perforating gun. WIPO: WO 2000/066881 A1. Schlumberger Tech. Corp. patents.google.com/patent/WO2000066881A1.##
[27]. Economides, M.J., Watters, L.T., & Dunn-Norman, S. (1998). Petroleum well construction. ##
[28]. Keese, J.A. & Oden, A.L. (1976). A comparison of jet perforating services Kern River field. SPE Symposium on Formation Damage Control. doi.org/10.2118/5690-MS. ##
[29]. Hushbeck, D.F. (1986). Precision perforation breakdown for more effective stimulation jobs. International Meeting on Petroleum Engineering. doi.org/10.2118/14096-MS. ##
[30]. https://petrowiki.spe.org/Perforating_design. ##
[31]. National Iranian South Oilfields Company (NISOC). (2023). ##
[32]. King, G.E. (2009). Perforating basics: How the perforating processes work. ##
[33]. Behrmann, L.A. (1995). Apparatus and method for determining an optimum phase angle for phased charges in a perforating gun to maximize distances between perforations in a formation. US Patent: US 5,392,857 A. Schlumberger Tech. Corp. patents.google.com/patent/US5392857A.##
[34]. Brooks, J.E. & Lopez de Cardenas, J. (2004). Optimizing charge phasing of a perforating gun. US Patent: US 2004/0118607 A1. Schlumberger Tech. Corp. patents.google.com/patent/US20040118607A1.##
[35]. Hardesty, J.T. (2017). Optimal phasing of charges in a perforating system and method. US Patent: US 2017/0275975 A1. GEODynamics Inc. patents.google.com/patent/US20170275975A1.##
[36]. Hardesty, J.T. & Rollins, J.A. (2016). Limited entry phased perforating gun system and method. EPO: EP 3,101,221 A1. GEODynamics Inc. patents.google.com/patent/EP3101221A1.##
[37]. Hardesty, J.T. & Wesson, D.S. (2017). Optimal phasing of charges in a perforating system and method. US Patent: US 2017/0275973 A1. GEODynamics Inc. patents.google.com/patent/US20170275973A1.##
[38]. Revett, L.W. (1985). Spiral gun apparatus. US Patent: US 4,552,234 A. Halliburton Co. patents.google.com/patent/US4552234A.##
[39]. Coludrovich, E. (2009). Perforating. Chevron Corp. ##